超碰97免费丨国产又粗又爽又黄丨法国伦理少妇愉情丨中文一级片丨杨贵妃情欲艳谭三级丨亚欧乱色丨91成人免费在线观看丨亚洲欧洲成人精品av97丨国产午精品午夜福利757视频播放丨美丽人妻被按摩中出中文字幕丨玩弄丰满熟妇xxxxx性60丨桃色五月丨粉豆av丨国产亚洲综合一区二区三区丨国产午夜福利精品一区丨亚洲一级淫片丨羞羞国产一区二区三区四区丨日本亚洲欧洲色α在线播放丨麻豆精品国产传媒av丨使劲快高潮了国语对白在线

高中數(shù)學知識點的總結(jié)

時間:2025-05-24 08:16:06 詩琳 知識點總結(jié) 我要投稿

高中數(shù)學知識點的總結(jié)

  總結(jié)是事后對某一階段的學習或工作情況作加以回顧檢查并分析評價的書面材料,通過它可以正確認識以往學習和工作中的優(yōu)缺點,因此,讓我們寫一份總結(jié)吧。那么總結(jié)有什么格式呢?以下是小編幫大家整理的高中數(shù)學知識點總結(jié) ,歡迎閱讀與收藏。

高中數(shù)學知識點的總結(jié)

  高中數(shù)學知識點的總結(jié) 1

  1、你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。

  2、線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?

  3、三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見

  3、線面平行的判定定理和性質(zhì)定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的`判定定理易把條件錯誤地記為”一個平面內(nèi)的兩條相交直線與另一個平面內(nèi)的兩條相交直線分別平行”而導致證明過程跨步太大。

  4、求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

  5、異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發(fā),是用銳角還是其補角,還是兩種情況都有可能。

  6、你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?

  7、兩條異面直線所成的角的范圍:0°《α≤90°

  直線與平面所成的角的范圍:0o≤α≤90°

  二面角的平面角的取值范圍:0°≤α≤180°

  8、你知道異面直線上兩點間的距離公式如何運用嗎?

  9、平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前后有關幾何元素的“不變量”與“不變性”。

  10、立幾問題的求解分為“作”,“證”,“算”三個環(huán)節(jié),你是否只注重了“作”,“算”,而忽視了“證”這一重要環(huán)節(jié)?

  11、棱柱及其性質(zhì)、平行六面體與長方體及其性質(zhì)。這些知識你掌握了嗎?(注意運用向量的方法解題)

  12、球及其性質(zhì);經(jīng)緯度定義易混。經(jīng)度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式。

  高中數(shù)學知識點的總結(jié) 2

  一、集合有關概念

  1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

  2、集合的中元素的三個特性:

  1)元素的確定性;

  2)元素的互異性;

  3)元素的無序性。

  說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

  (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}

  1)用拉丁字母表示集合:A={我校的籃球隊員}B={12345}。

  2)集合的表示方法:列舉法與描述法。

  注意啊:常用數(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

  關于“屬于”的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A。

  列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

  ①語言描述法:例:{不是直角三角形的三角形}

  ②數(shù)學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

  4、集合的分類:

  1)有限集含有有限個元素的集合。

  2)無限集含有無限個元素的集合。

  3)空集不含任何元素的集合例:{x|x2=—5}。

  二、集合間的基本關系

  1、“包含”關系子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。

  2、“相等”關系(5≥5,且5≤5,則5=5)

  實例:設A={x|x2—1=0}B={—11}“元素相同”

  結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B。

  ①任何一個集合是它本身的子集。AA

  ②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)

  ③如果ABBC那么AC

  ④如果AB同時BA那么A=B

  3、不含任何元素的.集合叫做空集,記為Φ。

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的運算

  1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集。

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。

  3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。

  4、全集與補集

  (1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  記作:CSA即CSA={x?x?S且x?A}。

  (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

  (3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。

  高中數(shù)學知識點的總結(jié) 3

  高考數(shù)學導數(shù)知識點

  (一)導數(shù)第一定義

  設函數(shù)y = f(x)在點x0的某個領域內(nèi)有定義,當自變量x在x0處有增量△x(x0 + △x也在該鄰域內(nèi))時,相應地函數(shù)取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導,并稱這個極限值為函數(shù)y = f(x)在點x0處的導數(shù)記為f(x0),即導數(shù)第一定義

  (二)導數(shù)第二定義

  設函數(shù)y = f(x)在點x0的某個領域內(nèi)有定義,當自變量x在x0處有變化△x(x — x0也在該鄰域內(nèi))時,相應地函數(shù)變化△y = f(x)— f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導,并稱這個極限值為函數(shù)y = f(x)在點x0處的導數(shù)記為f(x0),即導數(shù)第二定義

  (三)導函數(shù)與導數(shù)

  如果函數(shù)y = f(x)在開區(qū)間I內(nèi)每一點都可導,就稱函數(shù)f(x)在區(qū)間I內(nèi)可導。這時函數(shù)y = f(x)對于區(qū)間I內(nèi)的每一個確定的x值,都對應著一個確定的導數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y = f(x)的導函數(shù),記作y,f(x),dy/dx,df(x)/dx。導函數(shù)簡稱導數(shù)。

  (四)單調(diào)性及其應用

  1。利用導數(shù)研究多項式函數(shù)單調(diào)性的一般步驟

  (1)求f¢(x)

  (2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

  2。用導數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟

  (1)求f¢(x)

  (2)f¢(x)>0的解集與定義域的交集的對應區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間

  高中數(shù)學重難點知識點

  高中數(shù)學包含5本必修、2本選修,(理)包含5本必修、3本選修,每學期學習兩本書。

  必修一:1、集合與函數(shù)的概念(這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應用(比較抽象,較難理解)

  必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角

  這部分知識是高一學生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學生的立體意識較強。這部分知識高考占22———27分

  2、直線方程:高考時不單獨命題,易和圓錐曲線結(jié)合命題

  3、圓方程:

  必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計:3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學占到5分

  必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點,)必考大題:15———20分,并且經(jīng)常和其他函數(shù)混合起來考查

  2、平面向量:高考不單獨命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學占到13分左右2、數(shù)列:高考必考,17———22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數(shù)結(jié)合求最值、解集。

  高中數(shù)學知識點大全

  一、集合與簡易邏輯

  1、集合的元素具有確定性、無序性和互異性。

  2、對集合,時,必須注意到“極端”情況:或;求集合的子集時是否注意到是任何集合的子集、是任何非空集合的真子集。

  3、判斷命題的真假關鍵是“抓住關聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

  4、“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假”。

  5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”。

  原命題等價于逆否命題,但原命題與逆命題、否命題都不等價。反證法分為三步:假設、推矛、得果。

  6、充要條件

  二、函數(shù)

  1、指數(shù)式、對數(shù)式,

  2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合中的元素必有像,但第二個集合中的元素不一定有原像(中元素的像有且僅有下一個,但中元素的原像可能沒有,也可任意個);函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集的子集”。

  (2)函數(shù)圖像與軸垂線至多一個公共點,但與軸垂線的公共點可能沒有,也可任意個。

  (3)函數(shù)圖像一定是坐標系中的曲線,但坐標系中的曲線不一定能成為函數(shù)圖像。

  3、單調(diào)性和奇偶性

  (1)奇函數(shù)在關于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同。

  偶函數(shù)在關于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反。

  (2)復合函數(shù)的單調(diào)性特點是:“同性得增,增必同性;異性得減,減必異性”。

  復合函數(shù)的奇偶性特點是:“內(nèi)偶則偶,內(nèi)奇同外”。復合函數(shù)要考慮定義域的變化。(即復合有意義)

  4、對稱性與周期性(以下結(jié)論要消化吸收,不可強記)

  (1)函數(shù)與函數(shù)的圖像關于直線(軸)對稱。

  推廣一:如果函數(shù)對于一切,都有成立,那么的圖像關于直線(由“和的一半確定”)對稱。

  推廣二:函數(shù),的圖像關于直線對稱。

  (2)函數(shù)與函數(shù)的圖像關于直線(軸)對稱。

  (3)函數(shù)與函數(shù)的圖像關于坐標原點中心對稱。

  三、數(shù)列

  1、數(shù)列的通項、數(shù)列項的項數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項與數(shù)列的前項和公式的關系

  2、等差數(shù)列中

  (1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性。

  (2)也成等差數(shù)列。

  (3)兩等差數(shù)列對應項和(差)組成的新數(shù)列仍成等差數(shù)列。

  (4)仍成等差數(shù)列。

  (5)“首正”的遞等差數(shù)列中,前項和的最大值是所有非負項之和;“首負”的'遞增等差數(shù)列中,前項和的最小值是所有非正項之和;

  (6)有限等差數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定。若總項數(shù)為偶數(shù),則“偶數(shù)項和“奇數(shù)項和=總項數(shù)的一半與其公差的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和—偶數(shù)項和”=此數(shù)列的中項。

  (7)兩數(shù)的等差中項惟一存在。在遇到三數(shù)或四數(shù)成等差數(shù)列時,常考慮選用“中項關系”轉(zhuǎn)化求解。

  (8)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式)。

  3、等比數(shù)列中:

  (1)等比數(shù)列的符號特征(全正或全負或一正一負),等比數(shù)列的首項、公比與等比數(shù)列的單調(diào)性。

  (2)兩等比數(shù)列對應項積(商)組成的新數(shù)列仍成等比數(shù)列。

  (3)“首大于1”的正值遞減等比數(shù)列中,前項積的最大值是所有大于或等于1的項的積;“首小于1”的正值遞增等比數(shù)列中,前項積的最小值是所有小于或等于1的項的積;

  (4)有限等比數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定。若總項數(shù)為偶數(shù),則“偶數(shù)項和”=“奇數(shù)項和”與“公比”的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和“首項”加上“公比”與“偶數(shù)項和”積的和。

  (5)并非任何兩數(shù)總有等比中項。僅當實數(shù)同號時,實數(shù)存在等比中項。對同號兩實數(shù)的等比中項不僅存在,而且有一對。也就是說,兩實數(shù)要么沒有等比中項(非同號時),如果有,必有一對(同號時)。在遇到三數(shù)或四數(shù)成等差數(shù)列時,常優(yōu)先考慮選用“中項關系”轉(zhuǎn)化求解。

  (6)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項法、通項法、和式法(也就是說數(shù)列是等比數(shù)列的充要條件主要有這四種形式)。

  4、等差數(shù)列與等比數(shù)列的聯(lián)系

  (1)如果數(shù)列成等差數(shù)列,那么數(shù)列(總有意義)必成等比數(shù)列。

  (2)如果數(shù)列成等比數(shù)列,那么數(shù)列必成等差數(shù)列。

  (3)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列;但數(shù)列是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件。

  (4)如果兩等差數(shù)列有公共項,那么由他們的公共項順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù)。

  如果一個等差數(shù)列與一個等比數(shù)列有公共項順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進行研討,且以其等比數(shù)列的項為主,探求等比數(shù)列中那些項是他們的公共項,并構(gòu)成新的數(shù)列。

  5、數(shù)列求和的常用方法:

  (1)公式法:①等差數(shù)列求和公式(三種形式),

  ②等比數(shù)列求和公式(三種形式),

  (2)分組求和法:在直接運用公式法求和有困難時,常將“和式”中“同類項”先合并在一起,再運用公式法求和。

  (3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項和有其共性或數(shù)列的通項與組合數(shù)相關聯(lián),則常可考慮選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前和公式的推導方法)。

  (4)錯位相減法:如果數(shù)列的通項是由一個等差數(shù)列的通項與一個等比數(shù)列的通項相乘構(gòu)成,那么常選用錯位相減法,將其和轉(zhuǎn)化為“一個新的的等比數(shù)列的和”求解(注意:一般錯位相減后,其中“新等比數(shù)列的項數(shù)是原數(shù)列的項數(shù)減一的差”!)(這也是等比數(shù)列前和公式的推導方法之一)。

  (5)裂項相消法:如果數(shù)列的通項可“分裂成兩項差”的形式,且相鄰項分裂后相關聯(lián),那么常選用裂項相消法求和

  (6)通項轉(zhuǎn)換法。

  四、三角函數(shù)

  1、終邊與終邊相同(的終邊在終邊所在射線上)。

  終邊與終邊共線(的終邊在終邊所在直線上)。

  終邊與終邊關于軸對稱

  終邊與終邊關于軸對稱

  終邊與終邊關于原點對稱

  一般地:終邊與終邊關于角的終邊對稱。

  與的終邊關系由“兩等分各象限、一二三四”確定。

  2、弧長公式:,扇形面積公式:1弧度(1rad)。

  3、三角函數(shù)符號特征是:一是全正、二正弦正、三是切正、四余弦正。

  4、三角函數(shù)線的特征是:正弦線“站在軸上(起點在軸上)”、余弦線“躺在軸上(起點是原點)”、正切線“站在點處(起點是)”。務必重視“三角函數(shù)值的大小與單位圓上相應點的坐標之間的關系,‘正弦’‘縱坐標’、‘余弦’‘橫坐標’、‘正切’‘縱坐標除以橫坐標之商’”;務必記住:單位圓中角終邊的變化與值的大小變化的關系為銳角

  5、三角函數(shù)同角關系中,平方關系的運用中,務必重視“根據(jù)已知角的范圍和三角函數(shù)的取值,精確確定角的范圍,并進行定號”;

  6、三角函數(shù)誘導公式的本質(zhì)是:奇變偶不變,符號看象限。

  7、三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”!

  角的變換主要有:已知角與特殊角的變換、已知角與目標角的變換、角與其倍角的變換、兩角與其和差角的變換。

  8、三角函數(shù)性質(zhì)、圖像及其變換:

  (1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性

  注意:正切函數(shù)、余切函數(shù)的定義域;絕對值對三角函數(shù)周期性的影響:一般說來,某一周期函數(shù)解析式加絕對值或平方,其周期性是:弦減半、切不變。既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對值,其周期性不變;其他不定。如的周期都是,但的周期為,y=|tanx|的周期不變,問函數(shù)y=cos|x|,y=cos|x|是周期函數(shù)嗎?

  (2)三角函數(shù)圖像及其幾何性質(zhì):

  (3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。

  (4)三角函數(shù)圖像的作法:三角函數(shù)線法、五點法(五點橫坐標成等差數(shù)列)和變換法。

  9、三角形中的三角函數(shù):

  (1)內(nèi)角和定理:三角形三角和為,任意兩角和與第三個角總互補,任意兩半角和與第三個角的半角總互余。銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方。

  (2)正弦定理:(R為三角形外接圓的半徑)。

  (3)余弦定理:常選用余弦定理鑒定三角形的類型。

  五、向量

  1、向量運算的幾何形式和坐標形式,請注意:向量運算中向量起點、終點及其坐標的特征。

  2、幾個概念:零向量、單位向量(與共線的單位向量是,平行(共線)向量(無傳遞性,是因為有)、相等向量(有傳遞性)、相反向量、向量垂直、以及一個向量在另一向量方向上的投影(在上的投影是)。

  3、兩非零向量平行(共線)的充要條件

  4、平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個不共線向量,那么對該平面內(nèi)的任一向量a,有且只有一對實數(shù),使a= e1+ e2。

  5、三點共線;

  6、向量的數(shù)量積:

  六、不等式

  1、(1)解不等式是求不等式的解集,最后務必有集合的形式表示;不等式解集的端點值往往是不等式對應方程的根或不等式有意義范圍的端點值。

  (2)解分式不等式的一般解題思路是什么?(移項通分,分子分母分解因式,x的系數(shù)變?yōu)檎担瑯烁捌娲┻^偶彈回);

  (3)含有兩個絕對值的不等式如何去絕對值?(一般是根據(jù)定義分類討論、平方轉(zhuǎn)化或換元轉(zhuǎn)化);

  (4)解含參不等式常分類等價轉(zhuǎn)化,必要時需分類討論。注意:按參數(shù)討論,最后按參數(shù)取值分別說明其解集,但若按未知數(shù)討論,最后應求并集。

  2、利用重要不等式以及變式等求函數(shù)的最值時,務必注意a,b(或a,b非負),且“等號成立”時的條件是積ab或和a+b其中之一應是定值(一正二定三等四同時)。

  3、常用不等式有:(根據(jù)目標不等式左右的運算結(jié)構(gòu)選用)

  a、b、c R,(當且僅當時,取等號)

  4、比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數(shù)性質(zhì)法、綜合法、分析法

  5、含絕對值不等式的性質(zhì):

  6、不等式的恒成立,能成立,恰成立等問題

  (1)恒成立問題

  若不等式在區(qū)間上恒成立,則等價于在區(qū)間上

  若不等式在區(qū)間上恒成立,則等價于在區(qū)間上

  (2)能成立問題

  (3)恰成立問題

  若不等式在區(qū)間上恰成立,則等價于不等式的解集為。

  若不等式在區(qū)間上恰成立,則等價于不等式的解集為,

  七、直線和圓

  1、直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量))。應用直線方程的點斜式、斜截式設直線方程時,一般可設直線的斜率為k,但你是否注意到直線垂直于x軸時,即斜率k不存在的情況?

  2、知直線縱截距,常設其方程為或;知直線橫截距,常設其方程為(直線斜率k存在時,為k的倒數(shù))或知直線過點,常設其方程為。

  (2)直線在坐標軸上的截距可正、可負、也可為0。直線兩截距相等直線的斜率為—1或直線過原點;直線兩截距互為相反數(shù)直線的斜率為1或直線過原點;直線兩截距絕對值相等直線的斜率為或直線過原點。

  (3)在解析幾何中,研究兩條直線的位置關系時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合。

  3、相交兩直線的夾角和兩直線間的到角是兩個不同的概念:夾角特指相交兩直線所成的較小角,范圍是。而其到角是帶有方向的角,范圍是

  4、線性規(guī)劃中幾個概念:約束條件、可行解、可行域、目標函數(shù)、最優(yōu)解。

  5、圓的方程:最簡方程;標準方程;

  6、解決直線與圓的關系問題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價轉(zhuǎn)化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長、弦心距構(gòu)成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!”

  (1)過圓上一點圓的切線方程

  過圓上一點圓的切線方程

  過圓上一點圓的切線方程

  如果點在圓外,那么上述直線方程表示過點兩切線上兩切點的“切點弦”方程。

  如果點在圓內(nèi),那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程,(為圓心到直線的距離)。

  7、曲線與的交點坐標方程組的解;

  過兩圓交點的圓(公共弦)系為,當且僅當無平方項時,為兩圓公共弦所在直線方程。

  八、圓錐曲線

  1、圓錐曲線的兩個定義,及其“括號”內(nèi)的限制條件,在圓錐曲線問題中,如果涉及到其兩焦點(兩相異定點),那么將優(yōu)先選用圓錐曲線第一定義;如果涉及到其焦點、準線(一定點和不過該點的一定直線)或離心率,那么將優(yōu)先選用圓錐曲線第二定義;涉及到焦點三角形的問題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應用。

  (1)注意:①圓錐曲線第一定義與配方法的綜合運用;

  ②圓錐曲線第二定義是:“點點距為分子、點線距為分母”,橢圓點點距除以點線距商是小于1的正數(shù),雙曲線點點距除以點線距商是大于1的正數(shù),拋物線點點距除以點線距商是等于1。

  2、圓錐曲線的幾何性質(zhì):圓錐曲線的對稱性、圓錐曲線的范圍、圓錐曲線的特殊點線、圓錐曲線的變化趨勢。其中,橢圓中、雙曲線中。

  重視“特征直角三角形、焦半徑的最值、焦點弦的最值及其‘頂點、焦點、準線等相互之間與坐標系無關的幾何性質(zhì)’”,尤其是雙曲線中焦半徑最值、焦點弦最值的特點。

  3、在直線與圓錐曲線的位置關系問題中,有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價轉(zhuǎn)化求解。特別是:

  ①直線與圓錐曲線相交的必要條件是他們構(gòu)成的方程組有實數(shù)解,當出現(xiàn)一元二次方程時,務必“判別式≥0”,尤其是在應用韋達定理解決問題時,必須先有“判別式≥0”。

  ②直線與拋物線(相交不一定交于兩點)、雙曲線位置關系(相交的四種情況)的特殊性,應謹慎處理。

  ③在直線與圓錐曲線的位置關系問題中,常與“弦”相關,“平行弦”問題的關鍵是“斜率”、“中點弦”問題關鍵是“韋達定理”或“小小直角三角形”或“點差法”、“長度(弦長)”問題關鍵是長度(弦長)公式

  ④如果在一條直線上出現(xiàn)“三個或三個以上的點”,那么可選擇應用“斜率”為橋梁轉(zhuǎn)化。

  4、要重視常見的尋求曲線方程的方法(待定系數(shù)法、定義法、直譯法、代點法、參數(shù)法、交軌法、向量法等),以及如何利用曲線的方程討論曲線的幾何性質(zhì)(定義法、幾何法、代數(shù)法、方程函數(shù)思想、數(shù)形結(jié)合思想、分類討論思想和等價轉(zhuǎn)化思想等),這是解析幾何的兩類基本問題,也是解析幾何的基本出發(fā)點。

  注意:①如果問題中涉及到平面向量知識,那么應從已知向量的特點出發(fā),考慮選擇向量的幾何形式進行“摘帽子或脫靴子”轉(zhuǎn)化,還是選擇向量的代數(shù)形式進行“摘帽子或脫靴子”轉(zhuǎn)化。

  ②曲線與曲線方程、軌跡與軌跡方程是兩個不同的概念,尋求軌跡或軌跡方程時應注意軌跡上特殊點對軌跡的“完備性與純粹性”的影響。

  ③在與圓錐曲線相關的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結(jié)合(如角平分線的雙重身份)、“方程與函數(shù)性質(zhì)”化解析幾何問題為代數(shù)問題、“分類討論思想”化整為零分化處理、“求值構(gòu)造等式、求變量范圍構(gòu)造不等關系”等等。

  九、直線、平面、簡單多面體

  1、計算異面直線所成角的關鍵是平移(補形)轉(zhuǎn)化為兩直線的夾角計算

  2、計算直線與平面所成的角關鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運用等積法求點到直線的距離,后虛擬直角三角形求解。注:一斜線與平面上以斜足為頂點的角的兩邊所成角相等斜線在平面上射影為角的平分線。

  3、空間平行垂直關系的證明,主要依據(jù)相關定義、公理、定理和空間向量進行,請重視線面平行關系、線面垂直關系(三垂線定理及其逆定理)的橋梁作用。注意:書寫證明過程需規(guī)范。

  4、直棱柱、正棱柱、平行六面體、長方體、正方體、正四面體、棱錐、正棱錐關于側(cè)棱、側(cè)面、對角面、平行于底的截面的幾何體性質(zhì)。

  如長方體中:對角線長,棱長總和為,全(表)面積為,(結(jié)合可得關于他們的等量關系,結(jié)合基本不等式還可建立關于他們的不等關系式),

  如三棱錐中:側(cè)棱長相等(側(cè)棱與底面所成角相等)頂點在底上射影為底面外心,側(cè)棱兩兩垂直(兩對對棱垂直)頂點在底上射影為底面垂心,斜高長相等(側(cè)面與底面所成相等)且頂點在底上在底面內(nèi)頂點在底上射影為底面內(nèi)心。

  5、求幾何體體積的常規(guī)方法是:公式法、割補法、等積(轉(zhuǎn)換)法、比例(性質(zhì)轉(zhuǎn)換)法等。注意:補形:三棱錐三棱柱平行六面體

  6、多面體是由若干個多邊形圍成的幾何體。棱柱和棱錐是特殊的多面體。

  正多面體的每個面都是相同邊數(shù)的正多邊形,以每個頂點為其一端都有相同數(shù)目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體。

  7、球體積公式。球表面積公式,是兩個關于球的幾何度量公式。它們都是球半徑及的函數(shù)。

  十、導數(shù)

  1、導數(shù)的意義:曲線在該點處的切線的斜率(幾何意義)、瞬時速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數(shù)的導數(shù),C為常數(shù))

  2、多項式函數(shù)的導數(shù)與函數(shù)的單調(diào)性

  在一個區(qū)間上(個別點取等號)在此區(qū)間上為增函數(shù)。

  在一個區(qū)間上(個別點取等號)在此區(qū)間上為減函數(shù)。

  3、導數(shù)與極值、導數(shù)與最值:

  (1)函數(shù)處有且“左正右負”在處取極大值;

  函數(shù)在處有且左負右正”在處取極小值。

  注意:①在處有是函數(shù)在處取極值的必要非充分條件。

  ②求函數(shù)極值的方法:先找定義域,再求導,找出定義域的分界點,列表求出極值。特別是給出函數(shù)極大(小)值的條件,一定要既考慮,又要考慮驗“左正右負”(“左負右正”)的轉(zhuǎn)化,否則條件沒有用完,這一點一定要切記。

  ③單調(diào)性與最值(極值)的研究要注意列表!

  (2)函數(shù)在一閉區(qū)間上的最大值是此函數(shù)在此區(qū)間上的極大值與其端點值中的“最大值”

  函數(shù)在一閉區(qū)間上的最小值是此函數(shù)在此區(qū)間上的極小值與其端點值中的“最小值”;

  注意:利用導數(shù)求最值的步驟:先找定義域再求出導數(shù)為0及導數(shù)不存在的的點,然后比較定義域的端點值和導數(shù)為0的點對應函數(shù)值的大小,其中最大的就是最大值,最小就為最小。

  高中數(shù)學知識點的總結(jié) 4

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

  一、求動點的軌跡方程的基本步驟。

  1、建立適當?shù)淖鴺讼担O出動點M的坐標;

  2、寫出點M的集合;

  3、列出方程=0;

  4、化簡方程為最簡形式;

  5、檢驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。

  1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

  3、相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

  4、參數(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

  5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的.軌跡方程,這種求軌跡方程的方法叫做交軌法。

  求動點軌跡方程的一般步驟:

  ①建系——建立適當?shù)淖鴺讼担?/p>

  ②設點——設軌跡上的任一點P(x,y);

  ③列式——列出動點p所滿足的關系式;

  ④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關于X,Y的方程式,并化簡;

  ⑤證明——證明所求方程即為符合條件的動點軌跡方程。

  高中數(shù)學知識點的總結(jié) 5

  1、集合的含義與表示

  集合的三大特性:確定性、互異性、無序性。集合的表示有列舉法、描述法。

  描述法格式為:{元素|元素的特征},例如{x|x5,且xN}2、常用數(shù)集及其表示方法

  (1)自然數(shù)集N(又稱非負整數(shù)集):0、1、2、3、

  (2)正整數(shù)集N

  或N+:1、2、3、

  (3)整數(shù)集Z:

  (4)有理數(shù)集Q:包含分數(shù)、整數(shù)、有限小數(shù)等

  (5)實數(shù)集R:全體實數(shù)的集合

  (6)空集Ф:不含任何元素的集合

  3、元素與集合的關系:屬于∈,不屬于

  4、集合與集合的關系:子集、真子集、相等

  5、重要結(jié)論

  (1)傳遞性:若AB,BC,則AC

  (2)Ф是任何集合的子集,是任意非空集合的真子集。

  6、含有n個元素的集合,它的子集個數(shù)共有2n個;真子集有2n1個;非空子集有2n1個(即不計空集);非空的真子集有2n2個。

  7、集合的運算:交集、并集、補集.

  (1)A∩B={x|x∈A,且x∈B}.

  (2)A∪B={x|x∈A,或x∈B}.

  (3)CUAx|xU,且xA注:討論集合的情況時,不要發(fā)遺忘了A的情況。

  8、函數(shù)概念

  9、分段函數(shù):在定義域的不同部分,有不同的對應法則的函數(shù)。如y2x1x0x23x010、求函數(shù)的定義域的原則:(解決任何函數(shù)問題,必須要考慮其定義域)

  ①分式的分母不為零;如:y1x1,則x10

  ②偶次方根的被開方數(shù)大于或等于零;如:y5x,則5x0

  ③對數(shù)的底數(shù)大于0且不等于1;如:yloga(x2),則a0且a1

  ④對數(shù)的真數(shù)大于0;如:yloga(x2),則x20

  ⑤指數(shù)為0的底不能為零;如:y(m1)x,則m1011、函數(shù)的奇偶性(在整個定義域內(nèi)考慮)

  (1)奇函數(shù)滿足f(x)f(x),奇函數(shù)的圖象關于原點對稱;

  (2)偶函數(shù)滿足f(x)f(x),偶函數(shù)的圖象關于y軸對稱;

  注:

  ①具有奇偶性的函數(shù),其定義域關于原點對稱;

  ②若奇函數(shù)在原點有定義,則f(0)0

  ③根據(jù)奇偶性可將函數(shù)分為四類:奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)、非奇非偶函數(shù)。

  12、函數(shù)的單調(diào)性(在定義域的某個區(qū)間內(nèi)考慮)

  當x1x2時,都有f(x1)f(x2),則f(x)在該區(qū)間上是增函數(shù),圖象從左到右上升;當x1x2時,都有f(x1)f(x2),則f(x)在該區(qū)間上是減函數(shù),圖象從左到右下降。

  函數(shù)f(x)在某區(qū)間上是增函數(shù)或減函數(shù),那么說f(x)在該區(qū)間具有單調(diào)性,該區(qū)間叫做單調(diào)(增/減)區(qū)間

  13、一元二次方程ax2bxc0(a0)

  (1)求根公式:xbb24ac21,22a

  (2)判別式:b4ac

  (3)0時方程有兩個不等實根;0時方程有一個實根;0時方程無實根。

  (4)根與系數(shù)的關系韋達定理:xxbc12a,x1x2a

  14、二次函數(shù):一般式y(tǒng)ax2bxc(a0);兩根式y(tǒng)a(xx1)(xx2)(a0)

  (1)頂點坐標為(b4acb2by2a,4a);

  (2)對稱軸方程為:x=2a;x0

  (3)當a0時,圖象是開口向上的拋物線,在x=b4acb22a處取得最小值4a

  當a0時,圖象是開口向下的拋物線,在x=b4acb22a處取得最大值4a

  (4)二次函數(shù)圖象與x軸的交點個數(shù)和判別式的關系:

  0時,有兩個交點;0時,有一個交點(即頂點);0時,無交點。

  15、函數(shù)的零點

  使f(x)0的實數(shù)x20叫做函數(shù)的零點。例如x01是函數(shù)f(x)x1的一個零點。注:函數(shù)yfx有零點函數(shù)yfx的圖象與x軸有交點方程fx0有實根

  16、函數(shù)零點的判定:

  如果函數(shù)yfx在區(qū)間a,b上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)0。那么,函數(shù)yfx在區(qū)間a,b內(nèi)有零點,即存在ca,b,使得fc0。

  17、分數(shù)指數(shù)冪(a0,m,nN,且n1)m3

  (1)annam。如x3x2;

  (2)amn1132mn。如1;

  (3)(na)na;anamx3x

  (4)當n為奇數(shù)時,nana;當n為偶數(shù)時,nan|a|a,a0a,a0.1

  18、有理指數(shù)冪的運算性質(zhì)(a0,r,sQ)

  (1)arasars;

  (2)(ar)sars;

  (3)(ab)rarbr

  19、指數(shù)函數(shù)yax(a0且a1),其中x是自變量,a叫做底數(shù),定義域是Ra10a1yy圖象1x10x

  (1)定義域:R0性

  (2)值域:(0,+∞)質(zhì)

  (3)過定點(0,1),即x=0時,y=1

  (4)在R上是增函數(shù)(4)在R上是減函數(shù)20、若abN,則叫做以為底N的對數(shù)。記作:logaNb(a0,a1,N0)其中,a叫做對數(shù)的底數(shù),N叫做對數(shù)的真數(shù)。

  注:指數(shù)式與對數(shù)式的互化公式:logaNbabN(a0,a1,N0)

  21、對數(shù)的性質(zhì)

  (1)零和負數(shù)沒有對數(shù),即logaN中N0;

  (2)1的對數(shù)等于0,即loga10;底數(shù)的對數(shù)等于1,即logaa122、常用對數(shù)lgN:以10為底的對數(shù)叫做常用對數(shù),記為:log10NlgN

  自然對數(shù)lnN:以e(e=2.71828)為底的對數(shù)叫做自然對數(shù),記為:logeNlnN23、對數(shù)恒等式:alogaNN

  24、對數(shù)的運算性質(zhì)(a>0,a≠1,M>0,N>0)

  (1)loga(MN)logMaMlogaN;

  (2)logaNlogaMlogaN;

  (3)lognaMnlogaM(nR)(注意公式的逆用)

  25、對數(shù)的換底公式logmNaNloglog(a0,且a1,m0,且m1,N0)。

  ma推論

  ①或log1nnablog;

  ②logamblogab。

  bam

  26、對數(shù)函數(shù)ylogax(a0,且a1):其中,x是自變量,a叫做底數(shù),定義域是(0,)

  a10a1y圖像x01x01定義域:(0,∞)性質(zhì)值域:R過定點(1,0)增函數(shù)減函數(shù)取值范圍0

  ③如果兩個不重合的平面有一個公共點,那么它們有且僅有一條過該點的公共直線。

  ④平行于同一直線的兩條直線平行(平行的傳遞性)。

  33、等角定理:

  空間中如果兩個角的兩邊對應平行,那么這兩個角相等或互補(如圖)12334、兩條直線的位置關系:平行:(在同一平面內(nèi),沒有公共點)共面直線(在同一平面內(nèi),有一個公共點)異面直線

  相交:(不同在任何一個平面內(nèi)的兩條直線,沒有公共點)直線與平面的位置關系:

  (1)直線在平面上;

  (2)直線在平面外(包括直線與平面平行,直線與平面相交)

  兩個平面的位置關系:

  (1)兩個平面平行;

  (2)兩個平面相交35、直線與平面平行:

  定義一條直線與一個平面沒有公共點,則這條直線與這個平面平行。判定平面外一條直線與此平面內(nèi)的一直線平行,則該直線與此平面平行。

  性質(zhì)一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

  36、平面與平面平行:

  定義兩個平面沒有公共點,則這兩平面平行。

  判定若一個平面內(nèi)有兩條相交直線與另一個平面平行,則這兩個平面平行。

  性質(zhì)

  ①如果兩個平面平行,則其中一個面內(nèi)的任一直線與另一個平面平行。

  ②如果兩個平行平面同時與第三個平面相交,那么它們交線平行。

  37、直線與平面垂直:

  定義如果一條直線與一個平面內(nèi)的任一直線都垂直,則這條直線與這個平面垂直。

  判定一條直線與一個平面內(nèi)的兩相交直線垂直,則這條直線與這個平面垂直。

  性質(zhì)

  ①垂直于同一平面的兩條直線平行。

  ②兩平行直線中的一條與一個平面垂直,則另一條也與這個平面垂直。

  38、平面與平面垂直:

  定義兩個平行相交,如果它們所成的二面角是直二面角,則這兩個平面垂直。判定一個平面過另一個平面的垂線,則這兩個平面垂直。

  性質(zhì)兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直。

  39、三角形的'五“心”

  (1)O為ABC的外心(各邊垂直平分線的交點)。外心到三個頂點的距離相等

  (2)O為ABC的重心(各邊中線的交點)。重心將中線分成2:1的兩段

  (3)O為ABC的垂心(各邊高的交點)。

  (4)O為ABC的內(nèi)心(各內(nèi)角平分線的交點)。內(nèi)心到三邊的距離相等

  40、直線的斜率:

  (1)過Ax1,y1,Bx2,y2y12兩點的直線,斜率kyx,(x1x2)2x1

  (2)已知傾斜角為的直線,斜率ktan(900)

  41、直線位置關系:已知兩直線l1:yk1xb1,l2:yk2xb2,則l1//l2k1k2且b1b2 l1l2k1k21

  特殊情況:

  (1)當k1,k2都不存在時,l1//l2;

  (2)當k1不存在而k20時,l1l24

  2、直線的五種方程:

  ①點斜式y(tǒng)y1k(xx1)(直線l過點(x1,y1),斜率為k).

  ②斜截式y(tǒng)kxb(直線l在y軸上的截距為b,斜率為k)。

  ③兩點式y(tǒng)y1xx1yx(直線過兩點(x1,y1)與(x2,y2))。2y12x1

  ④截距式xayb1(a,b分別是直線在x軸和y軸上的截距,均不為0)

  ⑤一般式AxByC0(其中A、B不同時為0);可化為斜截式:yABxCB4

  3、(1)平面上兩點A(x,y221,y1),B(x22)間的距離公式:|AB|=(x1x2)(y1y2)

  (2)空間兩點A(x(x2221,y1,z1),B2,y2,z2)距離公式|AB|=(x1x2)(y1y2)(z1z2)

  (3)點到直線的距離d|Ax0By0C|A2B2(點P(x0,y0),直線l:AxByC0)。

  44、兩條平行直線AxByC10與AxByC20間的距離公式:dC1C2A2B2

  注:求直線AxByC0的平行線,可設平行線為AxBym0,求出m即得。

  45、求兩相交直線A1xB1yC10與A2xB2yC20的交點:解方程組AxB1yC10A12xB2yC20

  46、圓的方程:

  ①圓的標準方程(xa)2(yb)2r2。其中圓心為(a,b),半徑為r

  ②圓的一般方程x2y2DxEyF0。

  其中圓心為(D2,ED2E24F222),半徑為r2,其中DE4F>0

  47、直線AxByC0與圓的(xa)2(yb)2r2位置關系

  (1)dr相離0;

  (2)dr相切0;其中d是圓心到直線的距離,且dAaBbC(3)dr相交0。

  A2B23

  48、直線與圓相交于A(x1,y1),B(x2,y2)兩點,求弦AB長度的公式:

  (1)|AB|2r2d2

  (2)|AB|1k2(x21x2)4x1x2(結(jié)合韋達定理使用),其中k是直線的斜率

  49、兩個圓的位置關系:設兩圓的圓心分別為O1,O2,半徑分別為r1,r2,O1O2d

  1)dr1r2外離4條公切線;

  2)dr1r2外切3條公切線;

  3)r1r2dr1r2相交2條公切線;

  4)dr1r2內(nèi)切1條公切線;

  5)0dr1r2內(nèi)含無公切線

  必修③公式表

  50、三種抽樣方法的區(qū)別與聯(lián)系類別共同點各自特點相互聯(lián)系適用范圍簡單隨機抽樣從總體中逐個抽取總體中個體數(shù)較少分層抽取過程將總體分成幾層各層抽樣可采用總體有差異明顯的幾部抽樣中每個個體進行抽取簡單隨機抽樣或分組成被抽取的概系統(tǒng)抽樣率相等將總體平均分成系統(tǒng)抽樣幾部分,按事先確在起始部分抽樣定的規(guī)則分別在各時采用簡單隨機總體中的個體較多部分抽取抽樣

  51、

  (1)頻率分布直方圖(注意其縱坐標是“頻率/組距)

  組數(shù)極差,頻率頻數(shù),小矩形面積組距頻率頻率。組距樣本容量組距

  (2)數(shù)字特征

  眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)。

  中位數(shù):一組數(shù)從小到大排列,最中間的那個數(shù)(若最中間有兩個數(shù),則取其平均數(shù))。平均數(shù):x1nx1x2xn方差:s2=1n[(x22221x)(x2x)(x3x)(xnx)]

  標準差:s1nxx2x2212xxnx

  注:通過標準差或方差可以判斷一組數(shù)據(jù)的分散程度;其值越小,數(shù)據(jù)越集中;其值越大,數(shù)據(jù)越分散。ninxyxiy回歸直線方程:ybxa,其中bi1n,aybx,

  x2inx2i1

  注:回歸直線一定過樣本點中心(x,y)

  52、事件的分類:

  基本事件:一個事件如果不能再被分解為兩個或兩個以上事件,稱作基本事件。

  (1)必然事件:必然事件是每次試驗都一定出現(xiàn)的事件。P(必然事件)=1

  (2)不可能事件:任何一次試驗都不可能出現(xiàn)的事件稱為不可能事件。P(不可能事件)=0

  (3)隨機事件:隨機試驗的每一種結(jié)果或隨機現(xiàn)象的每一種表現(xiàn)稱作隨機事件,簡稱為事件

  53、在n次重復實驗中,事件A發(fā)生的次數(shù)為m,則事件A發(fā)生的頻率為m/n,當n很大時,m總是在某個常數(shù)值附近擺動,就把這個常數(shù)叫做事件A的概率。(概率范圍:0PA1)

  54、互斥事件概念:在一次隨機事件中,不可能同時發(fā)生的兩個事件,叫做互斥事件(如圖1)。如果事件A、B是互斥事件,則P(A+B)=P(A)+P(B)

  55、對立事件(如圖2):指兩個事件不可能同時發(fā)生,但必有一個發(fā)生。AB圖1對立事件性質(zhì):P(A)+P(A)=1,其中A表示事件A的對立事件。

  56、古典概型是最簡單的隨機試驗模型,古典概型有兩個特征:AB

  (1)基本事件個數(shù)是有限的;

  (2)各基本事件的出現(xiàn)是等可能的,即它們發(fā)生的概率相同.

  57、設一試驗有n個等可能的基本事件,而事件A恰包含其中的m個基本事件,則事件A的概率P(A)公式為PAA包含的基本事件的個數(shù)基本事件的總數(shù)=mn

  運用互斥事件的概率加法公式時,首先要判斷它們是否互斥,再由隨機事件的概率公式分別求它們的概率,然后計算。在計算某些事件的概率較復雜時,可轉(zhuǎn)而先示對立事件的概率。58、幾何概型的概率公式:PA構(gòu)成事件A的區(qū)域長度(面積或體積)試驗的全部結(jié)果構(gòu)成的區(qū)域長度(面積或體積)

  必修④公式表

  r59、終邊相同角構(gòu)成的集合:|2k,kZ

  l)l

  60、弧度計算公式:r

  61、扇形面積公式:S12lr12r2(為弧度)62、三角函數(shù)的定義:已知Px,y是的終邊上除原點外的任一點P(x,y)r則siny,cosx,tany,其中r2x2)yrrxy2x63、三角函數(shù)值的符號++++

  ++sincostan

  4

  64、特殊角的三角函數(shù)值:0235643234632sin012332122212220—1cos132112220—2—232—2—10tan03313不存—1—3在—330不存在65、同角三角函數(shù)的關系:sin2cos21,tansincos

  66、和角與差角公式:二倍角公式:

  sin()sincoscossin;sin22sincos

  cos()coscossinsin;cos2cos2sin212sin2

  tan()tantan2cos211tantan。tan22tan1tan267、誘導公式記憶口訣:奇變偶不變,符號看象限;其中,奇偶是指2的個數(shù)

  sin2ksinsinsinsinsinsinsincos2kcoscoscoscoscoscoscos

  tan2ktantantantantantantansin(2)coscos(2)sinsin(2)coscos(2)sin

  68、輔助角公式:asinbcos=a2b2sin()(輔助角所在象限與點(a,b)的象限相同,且

  tanba)。主要在求周期、單調(diào)性、最值時運用。如y3sinxcosx2sin(x6)

  69、半角公式(降冪公式):sin21cos1cos22,cos22270、三角函數(shù)yAsin(x)的性質(zhì)(A0,0)

  (1)最小正周期T2;振幅為A;頻率f1T;相位:x;初相:;值域:[A,A];

  對稱軸:由x2k解得x;對稱中心:由xk解得x組成的點(x,0)

  (2)圖象平移:x左加右減、y上加下減。

  例如:向左平移1個單位,解析式變?yōu)閥Asin[(x1)]向下平移3個單位,解析式變?yōu)閥Asin(x)3

  (3)函數(shù)ytan(x)的最小正周期T。71、正弦定理:在一個三角形中,各邊與對應角正弦的比相等。

  asinAbsinBcsinC2R(R是三角形外接圓半徑)cosAb2c2a2a2b2c22bccosA,2bc,ca2cacosB,推論cosc2a272、余弦定理:bBb2222,c2a2b22abcosC。2caosCa2b2c2c2ab。73、三角形的面積公式:S11ABC2absinC2acsinB12bcsinA。74、三角函數(shù)的圖象與性質(zhì)和性質(zhì)三角函數(shù)ysinxycosxytanxyyy11圖象xx—0x3—122—20—122—0222定義域(,)(,)(k2,k2)值域[—1,1][—1,1](,)最大值x22k,ymax1x2k,ymax1最小值x22k,ymin1x2k,ymin1周期22奇偶性奇函數(shù)偶函數(shù)奇函數(shù)在[22k,22k]在[2k,2k]在(2k,22k)單調(diào)性上是增函數(shù)上是增函數(shù)上都是增函數(shù)kZ在[22k,322k]在[2k,2k]上是減函數(shù)上是減函數(shù)76、向量的三角形法則:79、向量的平行平行四邊形法則:

  a+bbabab—aba+ba—177、平面向量的坐標運算:設向量a=(x1,y1),向量b=(x2,y2)

  (1)加法a+b=(x1x2,y1y2)。(2)減法a—b=(x1x2,y1y2)。(3)數(shù)乘a=(x1,y1)(x1,y1)

  (4)數(shù)量積ab=|a||b|cosθ=x1x2y1y2,其中是這兩個向量的夾角

  (5)已知兩點A(x1,y1),B(x2,y2),則向量ABOBOA(x2x1,y2y1)。

  78、向量a=(x,y)的模:|a|=(a)22222aaxy,即|a|a

  79、兩向量的夾角公式cosabx1x2y1y2abx2y22y2

  11x2280、向量的平行與垂直(b0)

  a||bb=λax1y2x2y10。記法:a=(x1,y1),b=(x2,y2)

  abab=0x1x2y1y20。記法:a=(x1,y1),b=(x2,y2)

  必修⑤公式表

  81、數(shù)列前n項和與通項公式的關系:

  aS1,n1;n(數(shù)列{an}的前n項的和為sna1a2aSn)。nSn1,n2.82、等差、等比數(shù)列公式對比nN等差數(shù)列等比數(shù)列定義式aanan1danq(q0)n1通項公式及a1推廣公式anaa1n1mddana1qnnmnanamqnm中項公式若a,A,b成等差,則Aab若a,G,b成等比,則G22ab運算性質(zhì)若mnpq2r,則若mnpq2r,則anamapaq2aranamapaqa2r前n項和公Sna1annna21q1,式Snnann112da11-qna11qanq1q,q1。一個性質(zhì)Sm,S2mSm,S3mS2m成等差數(shù)列Sm,S2mSm,S3mS2m成等比數(shù)列83、解不等式(1)、含有絕對值的不等式

  當a>0時,有xax2a2axa。[小于取中間]

  xax2a2xa或xa。[大于取兩邊]

  (2)、解一元二次不等式ax2bxc0,(a0)的步驟:

  ①求判別式b24ac000②求一元二次方程的解:兩相異實根一個實根沒有實根③畫二次函數(shù)yax2bxc的圖象

  ④結(jié)合圖象寫出解集

  ax2bxc0解集xxxb2或xx1xx2aR

  ax2bxc0解集xx1xx2

  注:ax2bxc0(a0)解集為Rax2bxc0對xR恒成立0(3)分式不等式:先移項通分,化一邊為0,再將除變乘,化為整式不等式,求解。如解分式不等式

  x1x1:先移項x1x10;通分(x1)xx0;再除變乘(2x1)x0,解出。

  84、線性規(guī)劃:

  直線AxByC0

  (1)一條直線將平面分為三部分(如圖):

  AxByC0(2)不等式AxByC0表示直線AxByC0

  AxByC0

  某一側(cè)的平面區(qū)域,驗證方法:取原點(0,0)代入不

  等式,若不等式成立,則平面區(qū)域在原點所在的一側(cè)。假如直線恰好經(jīng)過原點,則取其它點來驗證,例如取點(1,0)。

  (3)線性規(guī)劃求最值問題:一般情況可以求出平面區(qū)域各個頂點的坐標,代入目標函數(shù)z,最大的為最大值。

  高中數(shù)學知識點的總結(jié) 6

  等比數(shù)列公式性質(zhì)知識點

  1.等比數(shù)列的有關概念

  (1)定義:

  如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)(不為零),那么這個數(shù)列就叫做等比數(shù)列.這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達式為an+1/an=q(n∈N_,q為非零常數(shù)).

  (2)等比中項:

  如果a、G、b成等比數(shù)列,那么G叫做a與b的等比中項.即:G是a與b的等比中項a,G,b成等比數(shù)列G2=ab.

  2.等比數(shù)列的有關公式

  (1)通項公式:an=a1qn-1.

  3.等比數(shù)列{an}的常用性質(zhì)

  (1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.

  特別地,a1an=a2an-1=a3an-2=….

  (2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時q≠-1);an=amqn-m.

  4.等比數(shù)列的特征

  (1)從等比數(shù)列的定義看,等比數(shù)列的任意項都是非零的,公比q也是非零常數(shù).

  (2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.

  5.等比數(shù)列的前n項和Sn

  (1)等比數(shù)列的前n項和Sn是用錯位相減法求得的`,注意這種思想方法在數(shù)列求和中的運用.

  (2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.

  等比數(shù)列知識點

  1.等比中項

  如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項。

  有關系:

  注:兩個非零同號的實數(shù)的等比中項有兩個,它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

  2.等比數(shù)列通項公式

  an=a1_q’(n-1)(其中首項是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項和

  當q≠1時,等比數(shù)列的前n項和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  當q=1時,等比數(shù)列的前n項和的公式為

  Sn=na1

  3.等比數(shù)列前n項和與通項的關系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4.等比數(shù)列性質(zhì)

  (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

  (3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

  (5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項am,an的關系為an=am·q’(n-m)

  (7)在等比數(shù)列中,首項a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

  等比數(shù)列知識點總結(jié)

  等比數(shù)列:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0)。

  1:等比數(shù)列通項公式:an=a1_q^(n-1);推廣式:an=am·q^(n-m);

  2:等比數(shù)列求和公式:等比求和:Sn=a1+a2+a3+.......+an

  ①當q≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

  ②當q=1時,Sn=n×a1(q=1)記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  3:等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

  4:性質(zhì):

  ①若m、n、p、q∈N,且m+n=p+q,則am·an=ap_aq;

  ②在等比數(shù)列中,依次每k項之和仍成等比數(shù)列.

  例題:設ak,al,am,an是等比數(shù)列中的第k、l、m、n項,若k+l=m+n,求證:ak_al=am_an

  證明:設等比數(shù)列的首項為a1,公比為q,則ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

  所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an

  說明:這個例題是等比數(shù)列的一個重要性質(zhì),它在解題中常常會用到。它說明等比數(shù)列中距離兩端(首末兩項)距離等遠的兩項的乘積等于首末兩項的乘積,即:a(1+k)·a(n-k)=a1·an

  對于等差數(shù)列,同樣有:在等差數(shù)列中,距離兩端等這的兩項之和等于首末兩項之和。即:a(1+k)+a(n-k)=a1+an

  高中數(shù)學知識點的總結(jié) 7

  一、求導數(shù)的方法

  (1)基本求導公式

  (2)導數(shù)的四則運算

  (3)復合函數(shù)的導數(shù)

  設在點x處可導,y=在點處可導,則復合函數(shù)在點x處可導,且即

  二、關于極限

  1、數(shù)列的極限:

  粗略地說,就是當數(shù)列的項n無限增大時,數(shù)列的項無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:

  2、函數(shù)的極限:

  當自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當x趨近于時,函數(shù)的極限是,記作

  三、導數(shù)的概念

  1、在處的導數(shù)。

  2、在的導數(shù)。

  3。函數(shù)在點處的導數(shù)的幾何意義:

  函數(shù)在點處的導數(shù)是曲線在處的切線的斜率,

  即k=,相應的切線方程是

  注:函數(shù)的導函數(shù)在時的函數(shù)值,就是在處的`導數(shù)。

  例、若=2,則=()A—1B—2C1D

  四、導數(shù)的綜合運用

  (一)曲線的切線

  函數(shù)y=f(x)在點處的導數(shù),就是曲線y=(x)在點處的切線的斜率。由此,可以利用導數(shù)求曲線的切線方程。具體求法分兩步:

  (1)求出函數(shù)y=f(x)在點處的導數(shù),即曲線y=f(x)在點處的切線的斜率k=

  (2)在已知切點坐標和切線斜率的條件下,求得切線方程為x。

  高中數(shù)學知識點的總結(jié) 8

  一、集合、簡易邏輯

  1、集合;

  2、子集;

  3、補集;

  4、交集;

  5、并集;

  6、邏輯連結(jié)詞;

  7、四種命題;

  8、充要條件。

  二、函數(shù)

  1、映射;

  2、函數(shù);

  3、函數(shù)的單調(diào)性;

  4、反函數(shù);

  5、互為反函數(shù)的函數(shù)圖象間的關系;

  6、指數(shù)概念的擴充;

  7、有理指數(shù)冪的運算;

  8、指數(shù)函數(shù);

  9、對數(shù);

  10、對數(shù)的運算性質(zhì);

  11、對數(shù)函數(shù)。

  12、函數(shù)的應用舉例。

  三、數(shù)列(12課時,5個)

  1、數(shù)列;

  2、等差數(shù)列及其通項公式;

  3、等差數(shù)列前n項和公式;

  4、等比數(shù)列及其通頂公式;

  5、等比數(shù)列前n項和公式。

  四、三角函數(shù)

  1、角的概念的推廣;

  2、弧度制;

  3、任意角的三角函數(shù);

  4、單位圓中的三角函數(shù)線;

  5、同角三角函數(shù)的基本關系式;

  6、正弦、余弦的誘導公式;

  7、兩角和與差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);

  10、周期函數(shù);

  11、函數(shù)的奇偶性;

  12、函數(shù)的圖象;

  13、正切函數(shù)的圖象和性質(zhì);

  14、已知三角函數(shù)值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法舉例。

  五、平面向量

  1、向量;

  2、向量的加法與減法;

  3、實數(shù)與向量的積;

  4、平面向量的坐標表示;

  5、線段的定比分點;

  6、平面向量的數(shù)量積;

  7、平面兩點間的距離;

  8、平移。

  六、不等式

  1、不等式;

  2、不等式的基本性質(zhì);

  3、不等式的證明;

  4、不等式的解法;

  5、含絕對值的不等式。

  七、直線和圓的方程

  1、直線的傾斜角和斜率;

  2、直線方程的點斜式和兩點式;

  3、直線方程的一般式;

  4、兩條直線平行與垂直的條件;

  5、兩條直線的交角;

  6、點到直線的距離;

  7、用二元一次不等式表示平面區(qū)域;

  8、簡單線性規(guī)劃問題;

  9、曲線與方程的概念;

  10、由已知條件列出曲線方程;

  11、圓的標準方程和一般方程;

  12、圓的參數(shù)方程。

  八、圓錐曲線

  1、橢圓及其標準方程;

  2、橢圓的簡單幾何性質(zhì);

  3、橢圓的參數(shù)方程;

  4、雙曲線及其標準方程;

  5、雙曲線的簡單幾何性質(zhì);

  6、拋物線及其標準方程;

  7、拋物線的簡單幾何性質(zhì)。

  九、直線、平面、簡單何體

  1、平面及基本性質(zhì);

  2、平面圖形直觀圖的畫法;

  3、平面直線;

  4、直線和平面平行的判定與性質(zhì);

  5、直線和平面垂直的判定與性質(zhì);

  6、三垂線定理及其逆定理;

  7、兩個平面的位置關系;

  8、空間向量及其加法、減法與數(shù)乘;

  9、空間向量的坐標表示;

  10、空間向量的數(shù)量積;

  11、直線的方向向量;

  12、異面直線所成的角;

  13、異面直線的公垂線;

  14、異面直線的距離;

  15、直線和平面垂直的性質(zhì);

  16、平面的法向量;

  17、點到平面的距離;

  18、直線和平面所成的角;

  19、向量在平面內(nèi)的射影;

  20、平面與平面平行的性質(zhì);

  21、平行平面間的距離;

  22、二面角及其平面角;

  23、兩個平面垂直的判定和性質(zhì);

  24、多面體;

  25、棱柱;

  26、棱錐;

  27、正多面體;

  28、球。

  十、排列、組合、二項式定理

  1、分類計數(shù)原理與分步計數(shù)原理;

  2、排列;

  3、排列數(shù)公式;

  4、組合;

  5、組合數(shù)公式;

  6、組合數(shù)的兩個性質(zhì);

  7、二項式定理;

  8、二項展開式的性質(zhì)。

  十一、概率

  1、隨機事件的概率;

  2、等可能事件的概率;

  3、互斥事件有一個發(fā)生的概率;

  4、相互獨立事件同時發(fā)生的概率;

  5、獨立重復試驗。

  必修一函數(shù)重點知識整理

  1、函數(shù)的奇偶性

  (1)若f(x)是偶函數(shù),那么f(x)=f(—x);

  (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

  (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);

  (4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;

  (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2、復合函數(shù)的有關問題

  (1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

  (2)復合函數(shù)的單調(diào)性由“同增異減”判定;

  3、函數(shù)圖像(或方程曲線的對稱性)

  (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

  (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的.對稱點仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關于y=x+a(y=—x+a)的對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

  (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;

  (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a—x)恒成立,則y=f(x)圖像關于直線x=a對稱;

  (6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關于直線x=對稱;

  4、函數(shù)的周期性

  (1)y=f(x)對x∈R時,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

  (2)若y=f(x)是偶函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

  (3)若y=f(x)奇函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

  (4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

  (5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

  (6)y=f(x)對x∈R時,f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

  5、方程k=f(x)有解k∈D(D為f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0,a≠1,b>0,n∈R+);

  (2)l og a N=(a>0,a≠1,b>0,b≠1);

  (3)l og a b的符號由口訣“同正異負”記憶;

  (4)a log a N= N(a>0,a≠1,N>0);

  8、判斷對應是否為映射時,抓住兩點:

  (1)A中元素必須都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

  10、對于反函數(shù),應掌握以下一些結(jié)論:

  (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

  (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

  (3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

  (4)周期函數(shù)不存在反函數(shù);

  (5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;

  (6)y=f(x)與y=f—1(x)互為反函數(shù),設f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

  11、處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系;

  12、依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題

  13、恒成立問題的處理方法:

  (1)分離參數(shù)法;

  (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。

  拓展閱讀:高中數(shù)學復習方法

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

  所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經(jīng)過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

  2、研究每題都考什么

  數(shù)學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。

  3、錯一次反思一次

  每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。

  學生若能將每次考試或練習中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。

  4、分析試卷總結(jié)經(jīng)驗

  每次考試結(jié)束試卷發(fā)下來,要認真分析得失,總結(jié)經(jīng)驗教訓。特別是將試卷中出現(xiàn)的錯誤進行分類。

  高中數(shù)學知識點的總結(jié) 9

  有界性

  設函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界。

  單調(diào)性

  設函數(shù)f(x)的定義域為D,區(qū)間I包含于D.如果對于區(qū)間上任意兩點x1及x2,當x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。

  奇偶性

  設為一個實變量實值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù)。

  幾何上,一個奇函數(shù)關于原點對稱,亦即其圖像在繞原點做180度旋轉(zhuǎn)后不會改變。

  奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。

  設f(x)為一實變量實值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù)。

  幾何上,一個偶函數(shù)關于y軸對稱,亦即其圖在對y軸映射后不會改變。

  偶函數(shù)的'例子有|x|、x2、cos(x)和cosh(x)。

  偶函數(shù)不可能是個雙射映射。

  連續(xù)性

  在數(shù)學中,連續(xù)是函數(shù)的一種屬性。直觀上來說,連續(xù)的函數(shù)就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會產(chǎn)生輸出值的一個突然的跳躍甚至無法定義,則這個函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性)。

  高中數(shù)學知識點的總結(jié) 10

  一、平面的基本性質(zhì)與推論

  1、平面的基本性質(zhì):

  公理1如果一條直線的兩點在一個平面內(nèi),那么這條直線在這個平面內(nèi);

  公理2過不在一條直線上的三點,有且只有一個平面;

  公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

  2、空間點、直線、平面之間的位置關系:

  直線與直線—平行、相交、異面;

  直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

  平面與平面—平行、相交。

  3、異面直線:

  平面外一點A與平面一點B的連線和平面內(nèi)不經(jīng)過點B的.直線是異面直線(判定);

  所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);

  兩條直線不是異面直線,則兩條直線平行或相交(反證);

  異面直線不同在任何一個平面內(nèi)。

  求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角

  二、空間中的平行關系

  1、直線與平面平行(核心)

  定義:直線和平面沒有公共點

  判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)

  性質(zhì):一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行

  2、平面與平面平行

  定義:兩個平面沒有公共點

  判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行

  性質(zhì):兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。

  3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線

  三、空間中的垂直關系

  1、直線與平面垂直

  定義:直線與平面內(nèi)任意一條直線都垂直

  判定:如果一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直

  性質(zhì):垂直于同一直線的兩平面平行

  推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面

  直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度

  2、平面與平面垂直

  定義:兩個平面所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內(nèi)分別作垂直于棱的兩條射線所成的角)

  判定:一個平面過另一個平面的垂線,則這兩個平面垂直

  性質(zhì):兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直

  高中數(shù)學知識點的總結(jié) 11

  集合的分類:

  (1)按元素屬性分類,如點集,數(shù)集。

  (2)按元素的個數(shù)多少,分為有/無限集

  關于集合的概念:

  (1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

  (2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

  (3)無序性:判斷一些對象時候構(gòu)成集合,關鍵在于看這些對象是否有明確的標準。

  集合可以根據(jù)它含有的元素的個數(shù)分為兩類:

  含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

  非負整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N。

  在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_。

  整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z。

  有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分數(shù)的統(tǒng)稱,一切有理數(shù)都可以化成分數(shù)的形式。)

  實數(shù)全體構(gòu)成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分數(shù)。數(shù)學上,實數(shù)直觀地定義為和數(shù)軸上的'點一一對應的數(shù)。)

  1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}。

  有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

  例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}。

  無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。

  2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

  例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”

  而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

  一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

  高中數(shù)學知識點的總結(jié) 12

  ★高中數(shù)學導數(shù)知識點

  一、早期導數(shù)概念————特殊的形式大約在1629年法國數(shù)學家費馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構(gòu)造了差分f(A+E)—f(A),發(fā)現(xiàn)的因子E就是我們所說的導數(shù)f(A)。

  二、17世紀————廣泛使用的“流數(shù)術(shù)”17世紀生產(chǎn)力的發(fā)展推動了自然科學和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎上大數(shù)學家牛頓、萊布尼茨等從不同的角度開始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”他稱變量為流量稱變量的變化率為流數(shù)相當于我們所說的導數(shù)。牛頓的有關“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運用無窮多項方程的計算法》和《流數(shù)術(shù)和無窮級數(shù)》流數(shù)理論的實質(zhì)概括為他的重點在于一個變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的變化的比的構(gòu)成最在于決定這個比當變化趨于零時的極限。

  三、19世紀導數(shù)————逐漸成熟的理論1750年達朗貝爾在為法國科學家院出版的《百科全書》第五版寫的“微分”條目中提出了關于導數(shù)的一種觀點可以用現(xiàn)代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導數(shù)如果函數(shù)y=f(x)在變量x的兩個給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的.變量指定一個包含在這兩個不同界限之間的值那么是使變量得到一個無窮小增量。19世紀60年代以后魏爾斯特拉斯創(chuàng)造了ε—δ語言對微積分中出現(xiàn)的各種類型的極限重加表達導數(shù)的定義也就獲得了今天常見的形式。

  四、實無限將異軍突起微積分第二輪初等化或成為可能微積分學理論基礎大體可以分為兩個部分。一個是實無限理論即無限是一個具體的東西一種真實的存在另一種是潛無限指一種意識形態(tài)上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實無限用了150年后來極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個物理學長期爭論的問題后來由波粒二象性來統(tǒng)一。微積分無論是用現(xiàn)代極限論還是150年前的理論都不是最好的手段。

  ★高中數(shù)學導數(shù)要點

  1、求函數(shù)的單調(diào)性:

  利用導數(shù)求函數(shù)單調(diào)性的基本方法:設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

  利用導數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

  反過來,也可以利用導數(shù)由函數(shù)的單調(diào)性解決相關問題(如確定參數(shù)的取值范圍):設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,

  (1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

  (2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

  (3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

  2、求函數(shù)的極值:

  設函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

  可導函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

  (1)確定函數(shù)f(x)的定義域;(2)求導數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的

  變化情況:

  (4)檢查f(x)的符號并由表格判斷極值。

  3、求函數(shù)的最大值與最小值:

  如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。

  求函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

  (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。

  4、解決不等式的有關問題:

  (1)不等式恒成立問題(絕對不等式問題)可考慮值域。

  f(x)(xA)的值域是[a,b]時,

  不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)時,

  不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

  (2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

  5、導數(shù)在實際生活中的應用:

  實際生活求解最大(小)值問題,通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導數(shù)來求函數(shù)最值時,一定要注意,極值點唯一的單峰函數(shù),極值點就是最值點,在解題時要加以說明。

  高中數(shù)學知識點的總結(jié) 13

  (1)不等關系

  感受在現(xiàn)實世界和日常生活中存在著大量的不等關系,了解不等式(組)的實際背景。

  (2)一元二次不等式

  ①經(jīng)歷從實際情境中抽象出一元二次不等式模型的過程。

  ②通過函數(shù)圖象了解一元二次不等式與相應函數(shù)、方程的聯(lián)系。

  ③會解一元二次不等式,對給定的'一元二次不等式,嘗試設計求解的程序框圖。

  (3)二元一次不等式組與簡單線性規(guī)劃問題

  ①從實際情境中抽象出二元一次不等式組。

  ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。

  ③從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。

  (4)基本不等式

  ①探索并了解基本不等式的證明過程。

  ②會用基本不等式解決簡單的(小)值問題。

  高中數(shù)學知識點的總結(jié) 14

  1.求函數(shù)的單調(diào)性

  利用導數(shù)求函數(shù)單調(diào)性的基本方法:設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù).

  利用導數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間.

  反過來,也可以利用導數(shù)由函數(shù)的單調(diào)性解決相關問題(如確定參數(shù)的取值范圍):設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,

  (1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

  (2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

  (3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立.

  2.求函數(shù)的極值:

  設函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的`點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值).

  可導函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

  (1)確定函數(shù)f(x)的定義域;(2)求導數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的變化情況:

  (4)檢查f(x)的符號并由表格判斷極值.

  3.求函數(shù)的值與最小值:

  如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值.函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的

  求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

  (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值.

  4.解決不等式的有關問題:

  (1)不等式恒成立問題(絕對不等式問題)可考慮值域.

  f(x)(xA)的值域是[a,b]時,

  不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0.

  f(x)(xA)的值域是(a,b)時,

  不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0.

  (2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0.

  5.導數(shù)在實際生活中的應用:

  實際生活求解(小)值問題,通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導數(shù)來求函數(shù)最值時,一定要注意,極值點的單峰函數(shù),極值點就是最值點,在解題時要加以說明.

  高中數(shù)學知識點的總結(jié) 15

  一、圓及圓的相關量的定義

  1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

  2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫

  做直徑。

  3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

  4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

  5.直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

  6.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

  二、有關圓的字母表示方法

  圓--⊙ 半徑—r 弧--⌒ 直徑—d

  扇形弧長/圓錐母線—l 周長—C 面積—S三、有關圓的基本性質(zhì)與定理(27個)

  1.點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

  2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定

  理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

  4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。

  5.一條弧所對的圓周角等于它所對的圓心角的一半。

  6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7.不在同一直線上的3個點確定一個圓。

  8.一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形3邊距離相等。

  9.直線AB與圓O的位置關系(設OP⊥AB于P,則PO是AB到圓心的距

  離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

  11.圓與圓的位置關系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  三、有關圓的計算公式

  1.圓的周長C=2πr=πd

  2.圓的面積S=s=πr?

  3.扇形弧長l=nπr/180

  4.扇形面積S=nπr? /360=rl/2

  5.圓錐側(cè)面積S=πrl

  四、圓的方程

  1.圓的標準方程

  在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是

  (x-a)^2+(y-b)^2=r^2

  2.圓的一般方程

  把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2

  相關知識:圓的離心率e=0.在圓上任意一點的曲率半徑都是r.

  五、圓與直線的位置關系判斷

  平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的'位置關系判斷一般方法是

  討論如下2種情況:

  (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的一元二次方程f(x)=0.

  利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:

  如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

  如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離

  (2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1

  當x=-C/Ax2時,直線與圓相離

  當x1

  當x=-C/A=x1或x=-C/A=x2時,直線與圓相切

  圓的定理:

  1.不在同一直線上的三點確定一個圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2.圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱中心的中心對稱圖形

  4.圓是定點的距離等于定長的點的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點的集合

  7.同圓或等圓的半徑相等

  8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

  10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  11.定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角

  12.①直線L和⊙O相交 d

  ②直線L和⊙O相切 d=r

  ③直線L和⊙O相離 d>r

  13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑

  15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

  18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角

  19.如果兩個圓相切,那么切點一定在連心線上

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r

  ③兩圓相交 R-rr)

  ④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

  21.定理 相交兩圓的連心線垂直平分兩圓的公共弦

  22.定理 把圓分成n(n≥3):

  (1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

  (2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23.定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

  27.正三角形面積√3a/4 a表示邊長

  28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長計算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

  32.定理 一條弧所對的圓周角等于它所對的圓心角的一半

  33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

  35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

  高中數(shù)學知識點的總結(jié) 16

  高一數(shù)學上學期知識點:冪函數(shù)

  定義:

  形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

  定義域和值域:

  當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域

  性質(zhì):

  對于a的`取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

  排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x<0 x="">0的所有實數(shù),q不能是偶數(shù);

  排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

  總結(jié)起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:

  如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

  如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

  在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

  在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

  而只有a為正數(shù),0才進入函數(shù)的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

  可以看到:

  (1)所有的圖形都通過(1,1)這點。

  (2)當a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

  (3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。

  (4)當a小于0時,a越小,圖形傾斜程度越大。

  (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

  (6)顯然冪函數(shù)無界。

  高中數(shù)學知識點的總結(jié) 17

  1、等比中項

  如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項。

  有關系:

  注:兩個非零同號的實數(shù)的等比中項有兩個,它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

  2、等比數(shù)列通項公式

  an=a1_q’(n-1)(其中首項是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項和

  當q≠1時,等比數(shù)列的'前n項和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  當q=1時,等比數(shù)列的前n項和的公式為

  Sn=na1

  3、等比數(shù)列前n項和與通項的關系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4、等比數(shù)列性質(zhì)

  (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

  (3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

  (5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項am,an的關系為an=am·q’(n-m)

  (7)在等比數(shù)列中,首項a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

  等比數(shù)列求和公式

  q≠1時,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)

  q=1時,Sn=na1

  (a1為首項,an為第n項,d為公差,q為等比)

  這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0),等比數(shù)列a1≠ 0。注:q=1時,{an}為常數(shù)列。利用等比數(shù)列求和公式可以快速的計算出該數(shù)列的和。

  等比數(shù)列求和公式推導

  Sn=a1+a2+a3+、、、+an(公比為q)

  qSn=a1q + a2q + a3q +、、、+ anq = a2+ a3+ a4+、、、+ an+ a(n+1)

  Sn-qSn=(1-q)Sn=a1-a(n+1)

  a(n+1)=a1qn

  Sn=a1(1-qn)/(1-q)(q≠1)

  高中數(shù)學知識點的總結(jié) 18

  (一) 解斜三角形

  1、解斜三角形的主要定理:正弦定理和余弦定理和余弦的射影公式和各種形式的面積的公式。

  2、能解決的四類型的問題:(1)已知兩角和一條邊(2)已知兩邊和夾角(3)已知三邊(4) 已知兩邊和其中一邊的對角。

  (二) 解直角三角形

  1、解直角三角形的主要定理:在直角三角形ABC中,直角為角C,角A和角B是它的兩銳角,所對的邊a、b、c,(1) 角A和角B的和是90度;

  (2) 勾股定理:a的平方加上+b的平方=c的平方;(3) 角A的正弦等于a比上c,角A的余弦等于b比上c,角B的正弦等于b比上c,角B的余弦等于a比上c;(4)面積的公式s=ab/2;此外還有射影定理,內(nèi)外切接圓的半徑。

  2、解直角三角形的四種類型:

  (1)已知兩直角邊:根據(jù)勾股定理先求出斜邊,用三角函數(shù)求出兩銳角中的一角,再用互余關系求出另一角或用三角函數(shù)求出兩銳角中的兩角;

  (2)已知一直角邊和斜邊,根據(jù)勾股定理先求出另一直角邊,問題轉(zhuǎn)化為(1);

  (3)已知一直角邊和一銳角,可求出另一銳角,運用正弦或余弦,算出斜邊,用勾股定理算出另一直角邊;(4)已知斜邊和一銳角,先算出已知角的對邊,根據(jù)勾股定理先求出另一直角邊,問題轉(zhuǎn)化為(1)。

  如何學好高中數(shù)學

  1.先看筆記后做作業(yè)。 有的高中學生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學生對教師所講的內(nèi)容的理解,還沒能達到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關內(nèi)容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區(qū)別。尤其練習題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。

  2.做題之后加強反思。 學生一定要明確,現(xiàn)在正坐著的題,一定不是考試的`題目。而是要運用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思。總結(jié)一下自己的收獲。要總結(jié)出,這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構(gòu)建起一個內(nèi)容與方法的科學的網(wǎng)絡系統(tǒng)。

  3.主動復習總結(jié)提高。 進行章節(jié)總結(jié)是非常重要的。初中時是教師替學生做總結(jié),做得細致,深刻,完整。高中是自己給自己做總結(jié),老師不但不給做,而且是講到哪,考到哪,不留復習時間,也沒有明確指出做總結(jié)的時間。

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2是sinA的平方sin2(A))

  高中數(shù)學知識點的總結(jié) 19

  集合的分類:

  (1)按元素屬性分類,如點集,數(shù)集。

  (2)按元素的個數(shù)多少,分為有/無限集

  關于集合的概念:

  (1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

  (2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

  (3)無序性:判斷一些對象時候構(gòu)成集合,關鍵在于看這些對象是否有明確的標準。

  集合可以根據(jù)它含有的元素的個數(shù)分為兩類:

  含有有限個元素的集合叫做有限集,含有無限個元素的'集合叫做無限集。

  非負整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N。

  在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_。

  整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z。

  有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分數(shù)的統(tǒng)稱,一切有理數(shù)都可以化成分數(shù)的形式。)

  實數(shù)全體構(gòu)成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分數(shù)。數(shù)學上,實數(shù)直觀地定義為和數(shù)軸上的點一一對應的數(shù)。)

  1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}。

  有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

  例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}。

  無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。

  2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

  例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”

  而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

  一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

  高中數(shù)學知識點的總結(jié) 20

  首先,我們要了解下正弦定理的應用領域

  在解三角形中,有以下的應用領域:

  (1)已知三角形的兩角與一邊,解三角形

  (2)已知三角形的兩邊和其中一邊所對的角,解三角形

  (3)運用a:b:c=sinA:sinB:sinC解決角之間的轉(zhuǎn)換關系

  直角三角形的一個銳角的對邊與斜邊的比叫做這個角的正弦

  正弦定理

  在△ABC中,角A、B、C所對的邊分別為a、b、c,則有a/sinA=b/sinB=c/sinC=2R(其中R為三角形外接圓的半徑)

  其次,余弦的應用領域

  余弦定理

  余弦定理是揭示三角形邊角關系的重要定理,直接運用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個邊求角的問題,若對余弦定理加以變形并適當移于其它知識,則使用起來更為方便、靈活。

  正弦定理的變形公式

  (1) a=2RsinA, b=2RsinB, c=2RsinC;

  (2) sinA : sinB : sinC = a : b : c; 在一個三角形中,各邊與其所對角的正弦的比相等,且該比值都等于該三角形外接圓的直徑已知三角形是確定的,利用正弦定理解三角形時,其解是唯一的;已知三角形的兩邊和其中一邊的對角,由于該三角形具有不穩(wěn)定性,所以其解不確定,可結(jié)合平面幾何作圖的.方法及大邊對大角,大角對大邊定理和三角形內(nèi)角和定理去考慮解決問題

  (3)相關結(jié)論: a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC) c/sinC=c/sinD=BD=2R(R為外接圓半徑)

  (4)設R為三角外接圓半徑,公式可擴展為:a/sinA=b/sinB=c/sinC=2R,即當一內(nèi)角為90時,所對的邊為外接圓的直徑。靈活運用正弦定理,還需要知道它的幾個變形 sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA

  (5)a=bsinA/sinB sinB=bsinA/a

  正弦、余弦典型例題

  1.在△ABC中,C=90,a=1,c=4,則sinA 的值為

  2.已知為銳角,且,則 的度數(shù)是( ) A.30 B.45 C.60 D.90

  3.在△ABC中,若,A,B為銳角,則C的度數(shù)是() A.75 B.90 C.105 D.120

  4.若A為銳角,且,則A=() A.15 B.30 C.45 D.60

  5.在△ABC中,AB=AC=2,ADBC,垂足為D,且AD= ,E是AC中點, EFBC,垂足為F,求sinEBF的值。

  正弦、余弦解題訣竅

  1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理

  2、已知三邊,或兩邊及其夾角用余弦定理

  3、余弦定理對于確定三角形形狀非常有用,只需要知道最大角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。

  高中數(shù)學知識點的總結(jié) 21

  一、直線與方程高考考試內(nèi)容及考試要求:

  考試內(nèi)容:

  1.直線的傾斜角和斜率;直線方程的點斜式和兩點式;直線方程的一般式;

  2.兩條直線平行與垂直的條件;兩條直線的交角;點到直線的距離;

  考試要求:

  1.理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程;

  2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關系;

  二、直線與方程

  課標要求:

  1.在平面直角坐標系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;

  2.理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;

  3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關系;

  4.會用代數(shù)的方法解決直線的有關問題,包括求兩直線的交點,判斷兩條直線的位置關系,求兩點間的距離、點到直線的距離以及兩條平行線之間的距離等。

  要點精講:

  1.直線的傾斜角:當直線l與x軸相交時,取x軸作為基準,x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當直線l與x軸平行或重合時,規(guī)定α= 0°.

  傾斜角α的取值范圍:0°≤α<180°. 當直線l與x軸垂直時, α= 90°.

  2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k = tanα

  (1)當直線l與x軸平行或重合時,α=0°,k = tan0°=0;

  (2)當直線l與x軸垂直時,α= 90°,k 不存在。

  由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。

  3.過兩點p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:

  (若x1=x2,則直線p1p2的斜率不存在,此時直線的傾斜角為90°)。

  4.兩條直線的平行與垂直的判定

  (1)若l1,l2均存在斜率且不重合:

  ①;②

  注: 上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結(jié)論并不成立。

  (2)

  若A1、A2、B1、B2都不為零。

  注意:若A2或B2中含有字母,應注意討論字母=0與0的情況。

  兩條直線的交點:兩條直線的交點的個數(shù)取決于這兩條直線的方程組成的方程組的解的'個數(shù)。

  5.直線方程的五種形式

  確定直線方程需要有兩個互相獨立的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。

  直線的點斜式與斜截式不能表示斜率不存在(垂直于x 軸)的直線;兩點式不能表示平行或重合兩坐標軸的直線;截距式不能表示平行或重合兩坐標軸的直線及過原點的直線。

  6.直線的交點坐標與距離公式

  (1)兩直線的交點坐標

  一般地,將兩條直線的方程聯(lián)立,得方程組

  若方程組有唯一解,則兩條直線相交,解即為交點的坐標;若方程組無解,則兩條直線無公共點,此時兩條直線平行。

  (2)兩點間距離

  兩點P1(x1,y1),P2(x2,y2)間的距離公式

  特別地:軸,則、軸,則

  (3)點到直線的距離公式

  點到直線的距離為:

  (4)兩平行線間的距離公式:

  若,則:

  注意點:x,y對應項系數(shù)應相等。

  高中數(shù)學知識點的總結(jié) 22

  選修4-4數(shù)學知識點

  一、選考內(nèi)容《坐標系與參數(shù)方程》高考考試大綱要求:

  1.坐標系:

  ①理解坐標系的作用.

  ②了解在平面直角坐標系伸縮變換作用下平面圖形的變化情況.

  ③能在極坐標系中用極坐標表示點的位置,理解在極坐標系和平面直角坐標系中表示點的位置的區(qū)別,能進行極坐標和直角坐標的互化.

  ④能在極坐標系中給出簡單圖形(如過極點的直線、過極點或圓心在極點的圓)的方程.通過比較這些圖形在極坐標系和平面直角坐標系中的方程,理解用方程表示平面圖形時選擇適當坐標系的意義.

  2.參數(shù)方程:①了解參數(shù)方程,了解參數(shù)的意義.

  ②能選擇適當?shù)膮?shù)寫出直線、圓和圓錐曲線的參數(shù)方程.

  二、知識歸納總結(jié):

  1.伸縮變換:設點P(x,y)是平面直角坐標系中的任意一點,在變換:yy,(0).的作用下,點P(x,y)對應到點P(x,y),稱為平面直角坐標系中的坐標伸縮變換,簡稱伸縮變換。

  2.極坐標系的概念:在平面內(nèi)取一個定點O,叫做極點;自極點O引一條射線Ox叫做極軸;再選定一個長度單位、一個角度單位(通常取弧度)及其正方向(通常取逆時針方向),這樣就建立了一個極坐標系。

  3.點M的極坐標:設M是平面內(nèi)一點,極點O與點M的距離|OM|叫做點M的極徑,記為;以極軸Ox為始邊,射線OM為終邊的xOM叫做點M的極角,記為。有序數(shù)對(,)叫做點M的極坐標,記為M(,).極坐標(,)與(,2k)(kZ)表示同一個點。極點O的坐標為(0,)(R).

  4.若0,則0,規(guī)定點(,)與點(,)關于極點對稱,即(,)與(,)表示同一點。如果規(guī)定0,02,那么除極點外,平面內(nèi)的點可用唯一的極坐標(,)表示;同時,極坐標(,)表示的點也是唯一確定的。

  5.極坐標與直角坐標的互化:2x2y2,xcos,yysin,tan(x0)x

  6.圓的極坐標方程:在極坐標系中,以極點為圓心,r為半徑的圓的極坐標方程是r;在極坐標系中,以C(a,0)(a0)為圓心,a為半徑的圓的極坐標方程是2acos;在極坐標系中,以C(a,2)(a0)為圓心,a為半徑的圓的極坐標方程是2asin;

  7.在極坐標系中,(0)表示以極點為起點的一條射線;(R)表示過極點的一條直線.在極坐標系中,過點A(a,0)(a0),且垂直于極軸的直線l的極坐標方程是cosa.

  8.參數(shù)方程的概念:在平面直角坐標系中,如果曲線上任意一點的'坐標x,y都是某個變數(shù)txf(t),并且對于t的每一個允許值,由這個方程所確定的點M(x,y)都在這條yg(t),曲線上,那么這個方程就叫做這條曲線的參數(shù)方程,聯(lián)系變數(shù)x,y的變數(shù)t叫做參變數(shù),的函數(shù)簡稱參數(shù)。相對于參數(shù)方程而言,直接給出點的坐標間關系的方程叫做普通方程。xarcos,(為參數(shù)).

  9.圓(xa)(yb)r的參數(shù)方程可表示為ybrsin.xacos,x2y2(為參數(shù)).橢圓221(ab0)的參數(shù)方程可表示為abybsin.x2px2,2(t為參數(shù)).拋物線y2px的參數(shù)方程可表示為y2pt.xxotcos,經(jīng)過點MO(xo,yo),傾斜角為的直線l的參數(shù)方程可表示為(t為yyotsin.222參數(shù)).

  10.在建立曲線的參數(shù)方程時,要注明參數(shù)及參數(shù)的取值范圍。在參數(shù)方程與普通方程的互化中,必須使x,y的取值范圍保持一致.

【高中數(shù)學知識點的總結(jié)】相關文章:

高中數(shù)學的知識點總結(jié)04-10

高中數(shù)學導數(shù)知識點總結(jié)02-11

高中數(shù)學全部知識點總結(jié)02-20

高中數(shù)學知識點總結(jié)05-15

高中數(shù)學知識點總結(jié)09-22

高中數(shù)學基本的知識點總結(jié)09-28

高中數(shù)學知識點的總結(jié)12-19

高中數(shù)學復數(shù)知識點總結(jié)04-16

高中數(shù)學知識點的總結(jié)03-13

高中數(shù)學知識點總結(jié)最新05-06

fc2ppv在线播放| 成人av片在线观看| 麻豆文化传媒精品一区二区| 精品久久久久久一区二区| 国产精品永久免费观看| 天天视频污| 性猛交xxxxx富婆免费视频| 亚洲处破女av日韩精品| 青青操国产| 大阳蒂毛茸茸videoshd| 日本伊人久久| 成人性生生活性生交全黄| 5a级毛片| 伊人色综合久久天天| 婷婷亚洲天堂| av片免费| 大桥未久中文字幕| 人妻无码中文专区久久app| 成人看片黄a免费看在线| 天堂av最新网址| 中文字幕亚洲无线码| 四虎精品成人a在线观看| 日韩大片在线| 正在播放的国产a一片| 久久婷婷国产综合国色天香| 手机在线精品视频| 亚洲永久网站| 欧美人与动牲交片免费| 黄色国产小视频| 久在线观看福利视频69| a免费在线| 久久久精品国产sm调教网站| 国产精品久久久久不卡| 亚洲精品一区二区不卡| 久久久av亚洲男天堂| 青青草视频国产| 欧洲美女熟乱av| 婷婷91| 啪啪综合网| 伊人888| 男人撕开奶罩揉吮奶头视频| 中文字幕人妻少妇引诱隔壁| 网站久久久| 中文字幕精品久久久久| 国产视频一二三| 久久午夜福利无码1000合集| 久久久噜噜噜www成人网| 激情视频激情小说| 久久精品国产99国产精品导航| 毛茸茸日本熟妇高潮| 巨熟乳波霸若妻在线播放| 大香伊蕉在人线国产av| 免费av视屏| 欧美日韩国产成人在线| 91少妇和黑人露脸| 久操视频免费看| 国产中文区3幕区2021| 一区二区三区无码按摩精油| 国产香蕉久久| 老司机深夜福利在线观看| 免费无码av片在线观看国产| 狠狠色噜噜狠狠狠| 永久免费毛片在线播放| 日韩综合久久| 免费a v视频| 久久天天躁拫拫躁夜夜av | 粉嫩av一区二区三区四区在线观看| 国色天香国产精品| 中文字幕乱码免费| 爆乳喷奶水无码正在播放| av72在线观看| 国产裸体舞一区二区三区| 国产精品亚洲一区二区无码| 国产丝袜视频一区二区三区 | 国产欧美又粗又猛又爽老小说| 女同舌吻互慰一区二区| 国产黄在线观看免费观看软件| 福利视频91| 六月丁香激情| 国内精品久久久久影视| 欧美乱淫| 黄色av网| 黄频在线观看| 亚洲欧美熟妇综合久久久久| 国产精品免| 精品国产小视频在线观看| 欧美日韩人成综合在线播放| 亚洲色婷婷久久精品av蜜桃| 最新亚洲人成无码网www电影| 一级片少妇| 风韵人妻丰满熟妇老熟女| 中文字幕乱码熟女人妻水蜜桃| 国产精品无码无片在线观看| 四虎tv| 日韩麻豆视频| 浪潮av色综合久久天堂| 中国农村妇女真实bbwbbwbbw| 欧美xxxxx高潮喷水| 亚洲欧美日韩另类丝袜一区| 在线精品亚洲一区二区绿巨人| 99久久精品免费| 涩涩999| 国产精品一二三区成毛片视频| 麻豆91视频| 日韩在线视频线观看一区| 中文字幕一区二区三区四区免费看| 曰韩无码av一区二区免费| 国产第一页精品| wwwcom毛片| 成年人一级黄色片| 日韩乱码人妻无码中文字幕久久| 少妇哺乳期在线喷奶| 色综合色综合色综合| 俄罗斯videodesxo极品| 丝袜脚交一区二区| 国产99视频在线观看| 亚洲精品久久久久国产剧8| 午夜天堂在线观看| 成年人午夜影院| 国产又色又爽又黄的在线观看视频| 久久久观看| 欧美色欧美亚洲另类七区 | 夜夜精品视频| 99久久综合狠狠综合久久止| 2020最新国产在线不卡a| 国产69精品久久久久久妇女迅雷 | 黄片毛片在线免费观看| 狠狠躁三区二区久久天天| 日本丰满熟妇videossex8k| 日日摸夜夜添夜夜添毛片av| 中文字幕丰满孑伦无码专区| 成人av手机在线观看| 在线亚洲精品国产成人av剧情| 欧美人成片免费观看视频| 手机av在线播放| 欧美精品久久一区| 久久国产中文| 亚洲精品国产综合久久久久紧| 伦理片在线播放无遮无挡| 99久久99久久免费精品蜜桃| 午夜福利电影无码专区 | 美女网站免费黄| 国产不卡精品视频男人的天堂| 亚洲狠狠婷婷综合久久蜜芽| 国内外成人免费视频| 无码一区二区三区亚洲人妻| 小sao货水好多真紧h无码视频| 欧美做受又硬又粗又大视频| 久久综合av免费观看| 丝袜理论片在线观看| 2020国产成人精品影视| 妓院一钑片免看黄大片| 亚洲一区二区三区四区| 成人在线网址| 97亚洲熟妇自偷自拍另类图片| www.97超碰| 日韩精品一区二区大桥未久| 国产成人精品在线观看| va免费视频| 精品免费国偷自产在线视频| 91国内自产精华天堂| 一本大道东京热无码av| 欧美人与zoxxxx乱叫| 亚洲图色视频| 欧美在线www| 久久欧美一区二区三区性生奴| 中国产xxxxa片在线观看| youporn免费视频成人软件| 九九久久在线看| 欧美午夜特黄aaaaaa片| 无码丰满少妇2在线观看| 痴汉电车在线播放| 成人无码小视频在线观看| 精品久久久久久久久久久久包黑料 | av网天堂| 亚洲精品无码不卡在线播放he| 成人啪啪18免费网站| 日批免费观看| 免费又大粗又爽又黄少妇毛片| www.久久| 搡老熟女老女人一区二区 | 9色在线视频| 九九九九九依人| 成在人线av无码免观看麻豆| 亚洲偷自拍国综合色帝国| 成人免费大片黄在线播放| 黄色91在线观看| 好大好猛好爽好深视频免费| 国产精品偷拍| 亚洲国产日韩视频观看| 一边吃奶一边摸做爽视频| www啪啪com| 国产日韩中文| 鲁丝一区二区三区免费| av大片在线无码永久免费网址| 日本欧美在线| 免费三级毛片| 亚洲天堂影院| 国内精品人妻无码久久久影院| 亚洲国产123| 日韩永久免费视频| 毛片免费视频观看| 九九热九九| 少妇呻吟白浆高潮啪啪69| 国产精品国产精品国产专区蜜臀ah| 欧美又大又黄又粗又长a片| 亚洲国产字幕| 少妇逼逼| 久久久精品网| www欧美色| 一级做a爱片| 免费视频爱爱太爽了激情| www欧美国产| 国外av无码精品国产精品| 美女免费网站在线观看| 亚洲嫩| 中文字幕韩国三级理论无码| 99pao在线视频国产| 加勒比色老久久爱综合网| 日韩人妻无码精品久久| 国产精品久久久99| 亚洲成人www| 中本亚洲欧美国产日韩| 成人精品视频一区二区三区尤物| 麻豆熟妇人妻xxxxxx| 欧美性网址| 九色porny视频黑人| 午夜寂寞福利| 欧美射| 精品丝袜国产自在线拍小草| 亚洲狠狠色成人综合网| 久久人人添人人爽添人人88v| 啪啪短视频| 日本网站在线看| 八个少妇沟厕小便漂亮各种大屁股 | 区二三区四区精华日产一线二线三| 天天草天天爱| 亚洲精品成人| 男女啪啪免费视频网站| 伊人无码一区二区三区| 国产精品被窝福利一区| 欧美激情一区二区三区蜜桃视频| 91日本在线| 欧美性黑人极品hd另类| 在线播放不卡av| 日韩成人av免费在线观看| 日韩精品视频在线| 2018天天躁夜夜躁狠狠躁| 蜜臀av在线观看| 国产精品你懂的| 99久久精品久久久久久ai换脸| 亚洲日韩视频免费观看| videossex性糟蹋月经| av色婷婷| 在线播放毛片| 四虎8848精品| 日韩色小说| 97免费人妻在线视频| 无码人妻一区二区三区免费视频 | 狠狠躁天天躁中文字幕无码| 成人免费看类便视频| 国内精品久久久久影院日本| 亚洲中文字幕无码av| 亚洲大成色www永久网站注册 | 亚洲欧美另类激情| 亚洲高清无在码在线电影| 成人毛片免费网站| 男人天堂黄色| 亚洲一二三四区| 黄色片视频免费| 老色鬼a∨在线视频在线观看| 国产偷国产偷亚洲清高| 国产精品久久久午夜夜伦鲁鲁| 久9re热视频这里只有精品| 91多人xxx少妇| 小sao货水好多真紧h无码视频| 新片速递丨最新合集bt伙计| 深爱开心激情网| 成人激情在线观看| 天堂网av在线播放| 中文字幕高清一区| va欧美| 国产永久免费观看的黄网站| 欧美v日韩| 国产成人a在线观看视频| 一级bbbbbbbbb毛片| 荷兰成人性大交视频| 太粗太深了太紧太爽了动态图男男| 国产成 人 综合 亚洲奶水| 日韩城人免费| 18禁无遮挡羞羞污污污污免费| 97色婷婷| 国产精品一区二区在线免费观看| 国产在线98福利播放视频| 交aaa免费视频| jlzzzjlzzz国产免费观看| 成人免费看片'| 人妻少妇av无码一区二区| 国产成人拍精品视频午夜网站| 亚洲欧美中文字幕无线码| 无码av免费毛片一区二区| 麻豆国产精品777777在线| 亚洲网站在线播放| 九九99久久精品综合| 欧美xxxxx高潮喷水| 91看片在线| 国产精华av午夜在线| hd日本xxxx| 欧美激情网| tube欧美巨大44| 天堂а√在线中文在线新版| a级片在线| 亚洲国产精品无码一线岛国| 欧美偷拍视频| a在线天堂| 国产动漫av| 欧美视频www| 亚洲永久免费网站| 免费看成人午夜福利专区| 久久网站av| 久操免费在线| 午夜在线视频免费| 最新精品国偷自产在线下载| 日本综合在线| 久久成人综合| 午夜福利无遮挡十八禁视频| 五月天婷婷影院| 国产亚洲激情| 国产精品一区二区av日韩在线| 粉嫩一区| 国产精品久久久久桃色tv| 成人午夜视频免费观看| 91天天| 伊人亚洲大杳蕉色无码| 日本一区二区三区免费播放| 髙清视频播放在线观看| 最近中文字幕mv免费高清在线| 欧美黄色精品| av中文字幕一区| 偷看做性肉体探欲k8| 夜色综合网| 国产乱子伦在线观看| 成人午夜爽爽爽免费视频| 久草网址| 国 产 黄 色 大 片| 亚a在线| 久久久社区| 成人中文字幕+乱码+中文字幕| av成人免费在线| 亚洲最新版av无码中文字幕一区| 国产欧美一区二区三区在线看| 国产精品久aaaaa片| 午夜影院视频| 大奶子情人| 亚洲成av人片一区二区小说| 少妇专区| 99av成人精品国语自产拍| 亚洲色图在线观看视频| 国产欧美精品在线观看| 国产高清网站| 亚洲首页一区任你躁xxxxx| 精品国产三级a在线观看网站| juliaann艳妇精品hd| 国产黄视频在线观看| 亚洲人成无码区在线观看| 国产精品爽爽久久久久久蜜臀| 我爱我色成人网| 日本熟妇人妻中出| 久久网中文字幕日韩精品专区四季 | 99国产精品久久久久久久夜| 91午夜精品一区二区三区| 露脸内射熟女--69xx| 奇米四色影视| 色综合中文字幕| 懂色av一区| 国产黄av| 日韩欧美一卡二卡| 亚洲日韩在线中文字幕第一页| 欧美成人黄| 亚洲字幕成人中文在线电影网 | 日韩色吧| 波多野结衣高清一区二区三区 | 免费观看又色又爽又湿的视频| 裸体精品bbbbbbbbb| 国产精品毛片久久久久久久av| 91精品国产99久久久久久红楼| 丁香六月天婷婷| 日本3级网站| 国产91色| 国产 剧情 在线 精品| 久久国产a| 色一情| 操操网| 亚洲va在线∨a天堂va欧美va| 人妻系列av无码专区| 四虎国产成人永久精品免费| 无遮挡色视频免费观看| 激情综合色五月六月婷婷| 亚洲另类无码专区首页| 国产精品一区久久| 国产乱码一区二区三区爽爽爽 | 日批日韩在线观看| 午夜天堂视频| 亚洲精品成人网| 日本黄网站色大片免费观看| 好吊色在线视频| 丝袜美腿中文字幕| 久久精品第一页| 亚洲国产欧美一区二区好看电影| 国产一区二区三区四区精| 日韩欧美www| 欧美在线播放一区二区| 中文字幕资源网| 久久久久久夜精品精品免费啦 | 天天aaaaxxxx躁日日躁| www.香蕉.com| 大学生a做爰免费观看| 西西午夜视频| 91福利视频在线| 国产目拍亚洲精品二区| 伊人99re| 曰批免费视频播放免费| 韩国美女vip内部1101福利| 天堂av2019| 日韩色在线| 性乡下性大开放| 少妇出轨乱人伦| 免费看av在线| 亚洲最大中文字幕| 亚洲精品www久久久久久软件| 欧美激情18| 不卡av一区| 成人在线网| 国产亚洲婷婷香蕉久久精品| 饥渴少妇勾引水电工av| 亚洲看片lutube在线观看| 精品二三区| 五月99久久婷婷国产综合亚洲| 欧洲国产在线精品手机版| 综合网中文字幕| 亚洲成人第一网站| 台湾chinesehdxxxx少妇| 大陆极品少妇内射aaaaaa| 伊人97| 久久黄色一级视频| 日韩久久免费| 欧美aa级| 久久久久黄| 在线看片a| www亚洲www| 中文日产码2023天美| 人妻色综合网站| 免费黄网在线观看| 成人免费午夜无码视频| 天天综合射| 国产激情高中生呻吟视频| 国产成人精品123区免费视频| 日韩aa视频| 911国产在线观看| 欧美三级网址| 51国偷自产一区二区三区| 国产中文字幕三区| 久久网站免费看| 成人黄色片网站| 亚洲欧美成人一区二区三区| 日产精品中文一区二区三区| 香蕉久久一区二区三区| 国产精品白丝av嫩草影院| 欧美三级一区| 国产免费看黄| 国产超碰人人做人人爱一二区视品| 无码av免费一区二区三区a片| 在线欧美精品一区二区三区| 国产视频第一页| 成人做爰9片免费视频| 亚洲精品国产精品国自产| 久久精品首页| 欧美激情h| 成人免费视频观看视频| 99精品免费在线观看| www在线观看免费视频| 日韩三级黄色毛片| 一区二区三区播放| 国产黑色丝袜视频在线观看网红| 夫妻精品| 国产成人精品日本亚洲18| 午夜精品久久久久久不卡| 成人免费看片39| 91福利网| 国模欣谣大尺度啪啪人体| 99久久无码一区人妻| 四虎永久网址| 青青草91久久久久久久久| xfplay2023成人资源站| 黄色毛片小视频| av手机在线看| 日本人与禽zozzo小小的几孑| 久久99久国产麻精品66| 91精品久久久久久综合五月天| 98涩涩国产露脸精品国产网| 手机看片久久久| 五月婷婷爱爱| 国产成人亚洲综合a∨猫咪| 咪咪色影院| 欧美在线va| 亚洲日韩在线中文字幕第一页| 毛片视频网站在线观看| 国产网红女主播免费视频| 国产成人综合在线观看不卡| 亚洲综合在线一区二区三区| 久久看av| 亚洲不卡视频在线观看| 丰满少妇69激情啪啪无| 在线免费观看av网址| 香蕉久操| 久久久久xxxx| 亚洲国产精品不卡av在线| 中国女人初尝黑人巨高清视频| 中国女人内谢69xxxx| 97婷婷大伊香蕉精品视频| 福利姬液液酱喷水| 欧美重口另类在线播放二区| 成人做爰69片免费观看| 福利网址在线| 双乳奶水饱满少妇视频| 无码成人片在线播放| 久久精品久久久久久噜噜| 中文字幕av无码不卡免费| 中国精品妇女性猛交bbw| 在线播放黄色网址| 日本一区二区更新不卡| 久久精品国产99国产精品| 永久免费无码日韩视频| 丰满妇女强制高潮18xxxx| 无线乱码一二三区免费看| 91精品天码美女少妇| 午夜影院色| 亚洲图片欧美在线看| 天堂网www.| 日韩成人一区二区| 男女免费视频| www.桃色| 欧美xxxxx在线观看| 久久se精品一区二区| 成年人的视频网站| 99国产精品无码专区| 中国女人内谢69xxxx免费视频| jzjzjz欧美| 外国黄色录像| 日本xxxxxⅹxxxx69| 99热久久这里只精品国产www| 狠狠插视频| av片免费在线播放| 在线日韩av永久免费观看| 一本之道色综合网站| 亚洲午夜私人影院在线观看| 毛片av在线| 我要看黄色a级片| 国产夫妻性生活| 欧美多人片高潮野外做片黑人| 在线观看肉片av网站免费| 成人无码在线视频网站| 蜜国产精品jk白丝av网站| 亚洲视频在线观看免费的欧美视频| 成 人 网 站 在线 看 免费| 最近中文字幕日本| 日韩精品一区二区三区中文无码| 女人18毛片九区毛片在线| 黄色大片一级片| 男女做爰猛烈叫床高潮的书| 亚洲日韩欧美一区久久久久我| 免费激情片| 香蕉eeww99国产精选免费| 69网址| 午夜精品久久久久成人| 18pao国产成人免费视频| 欧美黄色特级视频| 6―13呦精品| 国产日韩av免费无码一区二区三区| www.日| 亚洲 欧美 日韩 综合| 久草在线这里只有精品| 亚洲亚洲人成网站77777| 欧洲国产在线精品手机版| 韩国av在线| 国产日韩第一页| 久久久一| 国产精品8888| 国产77777| 黄色大片aaa| 亚洲老熟女与小伙bbwtv| 久久99精品国产麻豆蜜芽| av资源网站| 手机在线看片| 四虎影城库| 亚洲爆乳成av人在线视水卜| 国精品午夜福利视频| 免费做a爰片久久毛片a片下载| 欧美大黑帍在线播放| 亚洲精品无码永久中文字幕| 国产午夜精品久久久久| 婷婷中文在线| 超清无码波多野吉衣中文| 日韩欧美亚洲综合久久影院ds| 91嫩草入口| 女人夜夜春高潮爽a∨片| 久久岛国| 茄子av在线| 免费观看亚洲人成网站| 亚洲黄色短视频| 无码精品视频一区二区三区| 国a产久v久伊人| 黄色网址哪里有| 欧美精品色图| 无码专区6080yy国产电影| 国产一区二区免费播放| 日韩国产成人无码av毛片| 中文字幕无码他人妻味| 亚洲欧美日韩精品久久亚洲区| 日本人jizz亚洲人| av久久久| 国产精品―色哟哟| 亚洲欧美成aⅴ人在线观看| 亚洲高清免费视频| 纤纤影视理伦片在线看| 国产日韩欧美亚欧在线| 无人去码一码二码三码区| 亚洲视频中文字幕在线观看| 欧美区一区二区| 国产免费看av| 久草播放| 欧美成人不卡视频| 四虎国产精品成人永久免费影视| 精品国产美女| 激情婷婷av| 日韩精品区| 亚洲黄色影视| 精品四虎国产在免费观看| 秋霞成人网| 红杏aⅴ成人免费视频| 国产9色在线 | 日韩| 无码国产69精品久久久孕妇| 国产黄在线| 最新2020无码中文字幕在线视频| 成熟人妻av无码专区| 色 综合 欧美 亚洲 国产| 国产亚洲视频在线| 亚洲看| 久久精品国产精品亚洲精品| 无码一区18禁3d| 四虎永久在线精品免费观看网站| 麻豆乱码国产一区二区三区| 国产色站| 高清久久久| 久久密| 日韩v91综合区| 免费黄色在线网址| 欧美精品日韩少妇| 94久久国产乱子伦精品免费| 丝袜美腿一区二区三区动态图 | 亚洲一线二线三线久久久| 国产在线视频一区二区董小宛性色| 麻豆果冻传媒精品国产苹果| 亚洲综合色av| 免费asmr色诱娇喘呻吟外国| 亚洲一区二区三区四区五区六区| 美国免费黄色片| 亚洲女成人图区| 日产有线一区2区三区| 99国产视频| 国产精品久久久久久无毒偷食禁果 | 国产av亚洲第一女人av| 黄色观看网站| 亚洲精品www.| 我爱52av| 夜夜嗨av久久av| 91动态图| 欧美黄大片| 亚洲色欲色欲大片www无码| 大香伊人| 噜噜噜久久| 久久久啊啊啊| 无码专区视频精品老司机| 亚洲,国产成人av| 在线观看91精品国产网站| 精品免费看国产一区二区| 亚洲国产免费视频| 91夜色视频| 久久久蜜桃| 国产免费又爽又色又粗视频| 亚洲成人综合在线| 国产成人无码av| 国产高清视频在线观看69| 免费在线观看小视频| 噜噜噜av久久| 国产高清无密码一区二区三区| 色先锋av影音先锋在线| 亚洲国产成人无码av在线影院| 日日夜夜综合网| 日韩成人在线免费视频| 久久久久久久久久一级| 亚州中文字幕| 中文有码人妻字幕在线| 2019最新中文字幕| 亚洲 丝袜 自拍 清纯 另类| 黄色av免费| 老司机一区| 九色com| 成人h无码动漫在线观看| 无码精品人妻一区二区三区老牛| 亚洲精品久久久久久中文| 伊人黄色| 五月婷在线视频| 国产一级自拍| 天天干,天天爽| 清清草免费视频| 天堂8在线天堂资源bt| 久久精品伊人久久精品伊人| 国产精品欧美久久久久无广告| 男人免费视频| 亚洲福利av| 亚洲精品国产a久久久久久| 少妇被猛男粗大的猛进出| 无遮挡h肉视频在线观看免费资源| 国产精品久久久久久久久久久久久| 一本一道波多野结衣av中文| 色涩久久| 欧美男人又粗又长又大| 日本不卡不码高清视频| 欧美成 人 在线播放视频| 日韩av片观看| 69影院少妇在线观看| 日色网站| 伊人九九九有限公司| 国产av导航大全精品| 三级午夜理伦三级| 午夜男女爽爽爽在线视频 | 国产免费一级淫片a级中文| 免费看h网站| 伊人看片| 性视频欧美| 国产男小鲜肉同志免费| 久久免费观看午夜成人网站| 日本伊人久久| 久久精品99国产精| 精品久久亚洲中文字幕| 日韩视频网址| 亚洲一区二区久久| 国产精品久久久爽爽爽麻豆色哟哟| 深夜视频在线| xxxx性视频| aaa亚洲| 性猛交富婆xxxx乱大| 高h肉辣动漫h在线观看| 亚洲欧洲偷自拍图片区| 国产精品婷婷久久久久久| 日韩在线一级片| 国产婷婷色一区二区三区| 日韩黄色免费观看| 欧美黄色录像片| 日本高清色倩视频在线观看| 久久精品tv| 欧美人与动牲交免费观看网| 人人爽人人爽人人片av免费| 欧美日韩中文在线| 视频福利在线| 牛牛在线视频| 一级香蕉视频在线观看| 天天精品视频| 国产人澡人澡澡澡人碰视| 天天撸日日夜夜| 干日本少妇首页| 女同一区二区免费aⅴ| 国产偷人妻精品一区二区在线| 大色综合| 四虎影视在线永久免费观看| 粗大猛烈进出高潮视频二| 中文字幕精品亚洲无线码一区应用 | 久久精品日产第一区二区三区| 欧美精品a片久久www慈禧| 亚洲裸体视频| 国产调教打屁股xxxx网站| 国产乱色精品成人免费视频| 国产精品久久久久久久久久久不卡| 伊人22综合| 91不戴套国语对白在线观看| 免费国精产品wnw2544| 欧美三日本三级三级在线播放| 国产精品久久久久久婷婷动漫| 亚洲伦理精品| av无码久久久久不卡网站蜜桃| 久久人妻少妇嫩草av| 亚洲人成久久婷婷精品五码| 美女网站污| 激情无码人妻又粗又大| 国产精品人成视频免费播放| 亚洲天堂高清| 天堂欧美城网站网址| 亚洲乱码日产精品b| 久久久av网站| 精品国产乱码久久久久久下载 | 少妇人妻挤奶水中文视频毛片| 国产精品福利一区二区久久| 国产亚洲中文日本不卡二区 | 爱爱网站免费| 成长快手短视频在线观看| 国产69精品久久久久毛片| 小h片网站| 一级片在线放映| 69视频网| 日韩人妻无码精品—专区| 四色av网站入口| 偷窥国产亚洲免费视频| 佐佐木希av一区二区三区| 特黄特色大片免费视频观看| 亚洲怡春院| 亚洲午夜精品| www99日本精品片com| 国产精品无码素人福利不卡| 九九99久久精品在免费线bt| 91精品天码美女少妇| 色播视频在线观看| 精品久久人人妻人人做精品| 人禽伦免费交视频播放| 男操女逼网站| 狠狠色噜噜| 被灌满精子的波多野结衣| 含紧一点h边做边走动免费视频| 亚洲激情视频| 国产开嫩苞视频在线观看| 老司机在线免费视频| 国产三级黄色毛片| 午夜亚洲乱码伦小说区69堂| 韩国午夜福利片在线观看| 99九九视频| 懂色av中文一区二区三区| 黑人巨大猛交丰满少妇| 26uuu亚洲婷婷狠狠天堂| 亚洲欧洲国产成人综合在线| www.日韩在线| 国产欧精精久久久久久久| 日韩av午夜在线观看| 中日毛片| 色婷婷综合久久久久中文| 亚洲精品久久久久久久久久久久久久| 免费毛片大肚孕妇孕交av| 99日韩精品视频| 在线免费看a| 久久久久亚洲精品无码系列| 色天天色| 亚洲欧美一区二区三区三高潮 | 亚洲精品久久久久久成人| 91av短视频| 亚洲另类自拍丝袜第五页| 伊人久久久av老熟妇色| 国产污视频在线播放| 播放少妇的奶头出奶水的毛片| 国产日韩一区二区三区| 亚洲欧美一区二区三区日产| 狂野av人人澡人人添| 欧美成人福利视频| 国产精品亚洲一区二区三区喷水 | 夜久久| 欧美色哟哟| 国产经典三级| 无码国产玉足脚交极品网站| 三级国产在线| 精品一区二区三区激情在线欧美| 国产69精品久久久久777糖心| 男人激烈吮乳吃奶视频片| 国产欧美在线一区二区三| 黄色aa级片| 97精品久久久午夜一区二区三区 | 天堂一区| 国产第5页| 午夜av免费| 在线97| 国产高清美女一级a毛片久久w| 亚瑟国产精品久久| 一道本av在线| 亚洲国产精品激情在线观看| 西西大胆午夜人体视频妓女| 香蕉97超级碰碰碰免费公开| 国产主播福利| 欧美亚洲国产日韩一区二区| 小镇姑娘高清在线观看| 久久天堂av| 超碰在线最新| 中文在线8资源库| 亚洲欧美综合精品另类天天更新| 国产视频h| 久一精品| 国产区77777777免费| 韩国av一区二区三区| 成年片色大黄全免费软件到| 小雪好紧好滑好湿好爽视频| 天天操天天干天天操| 色五月丁香五月综合五月| 国产日韩欧美视频在线| 欧美精品免费观看二区| 5x社区未满十八在线视频| 日本精品aⅴ一区二区三区| 久久99久久99精品免观看粉嫩| 色播亚洲视频在线观看| 99精品国产成人一区二区| 国产sm鞭打折磨调教视频| 亚洲综合小说另类图片五月天| 农村寡妇一区二区三区| 国内揄拍国内精品人妻| 日本japanese极品少妇| 亚洲第一天堂影院| 高清国产亚洲欧洲av综合一区| 色婷婷香蕉在线| 亚洲精品久久久久久国产精华液| jizz成熟丰满老女人| 九一九色国产| 午夜寂寞剧场| 一区在线免费| 久久这里精品国产99丫e6| 欧美人善z0zo性伦交高清| 日本三级2018| 性无码一区二区三区在线观看| 91精品啪在线观看国产老湿机| 97人人艹| a视频免费看| 国产高清免费在线观看| 丰满人妻被中出中文字幕| 无码精品久久久久久人妻中字| 青青草97国产精品麻豆| 国产精品人成视频免费vod| 午夜香蕉网| 成人片免费看| www嫩草| 性高湖久久久久久久久| 狠狠操2019| 日韩av无码社区一区二区三区| 欧美久久伊人| www色在线观看| 欧洲精品一区二区三区| 蜜桃色999| 中文字幕人成乱码熟女app| 97性无码区免费| 凹凸国产熟女精品视频app| 99精品综合| 欧美成 人 在线播放视频| 国产欧美国产综合每日更新| www.狠狠插| 精品久久久久一区二区| 亚洲男人电影天堂无码| xxxx日韩| 国产黄色av片| 在线 无码 中文字幕 强 乱| 懂色aⅴ精品一区二区三区蜜月| 久久成人国产精品免费| 青青在线精品| 噜噜噜噜狠狠狠7777视频| 日韩一卡2卡3卡4卡乱码网站导航| 一级黄色片久久| 7799精品视频天天看| 成人性午夜免费网站蜜蜂| 国产乱子伦无套一区二区三区| 欧美另类变人与禽xxxxx| 中文久久乱码一区二区| 成人做爰视频www网站| 久久亚洲私人国产精品va| aaa亚洲精品一二三区| 性做久久久| 青青草成人在线| 欧美人与动牲交zooz乌克兰| 国产h视频在线| 日韩精品国产一区| 午夜尤物禁止18点击进入| 国产成人av三级在线观看按摩| 欧洲亚洲日韩性无码专区| 日韩精品久久久久| 欧美一区二区在线播放| 久久不卡日韩美女| 国产在线麻豆| 韩国日本在线观看| 国产一区二区三区在线观看视频 | 国产黄色片在线| 日韩在线一区二区不卡视频| 肉视频在线观看| www日日日| 一区二区高清国产在线视频| 成人免费一区二区三区视频| 国产干b| 国产成人亚洲综合色影视| 新疆毛片| 欧美日韩三级| 青青久久av| 八个少妇沟厕小便漂亮各种大屁股 | 偷拍中国夫妇高潮视频| 国产成人免费xxxxxxxx| 亚洲爽爆| 国产精品无码av天天爽| 永久免费观看国产裸体美女| 午夜影院色| 青青五月天| 国产精品拍国产拍拍偷 | 天堂伊人久久| 国产盗摄x88av| 亚洲中文字幕第一页在线| 国产精品欧美一区二区三区奶水| 福利视频亚洲| 国产福利片在线观看| 草综合| 1级黄色大片儿| 宝宝好涨水快流出来免费视频| 亚洲 国产 制服 丝袜 另类| 国产成人精品视频一区二区不卡| 亚洲aⅴ精品一区二区三区91| www.蜜臀| 国产精品免费网站| 操韩国美女| 国产美熟女乱又伦av果冻传媒| 精品 日韩 国产 欧美 视频| 少妇被粗大的猛烈进出69影院一 | 国产精品久久久久久亚洲| 欧美一级专区| 性无码专区无码片| 精品自拍一区| 国产色xx群视频射精| 国产成人午夜福利电影在线播放| 九七超碰在线| 最新亚洲人成网站在线影院| www.日日| 国产成人免费永久播放视频平台| 少妇午夜av一区| 名人明星三级videos| 久热综合在线亚洲精品| 五十路熟女丰满大屁股| 噜啦噜色姑娘综合| 日韩精品乱码久久久久久| av网站免费在线播放| 国产午夜精品一区二区三区老| 国产区一区二| 波多野结衣视频在线播放| 久久久精品中文字幕乱码18| 欧美一级免费片| jizz性欧美2| 小污女导航福利入口| 91在线偷拍系列| 免费热情视频| 日本高清二区视频久二区| 亚洲欧美色图在线| 免费污片网站| 欧美亚洲综合久久偷偷人人| 91久久综合| 亚洲中文无码人a∨在线| 美女又大又黄www免费网站| 2019精品国自产拍在线不卡| 亚洲视频自拍偷拍| av天堂亚洲国产av| 99精产国品一二三产区在线| 欧美大片抢先看| 婷婷久久五月| 一级黄色av| 国产成人av无码精品| 亚洲精品精品| 91精品国产美女在线观看| 超碰在线| 国产不卡久久精品影院| 欧美日韩伊人| 69视频在线看| 亚洲日本国产综合高清| 黄色福利视频| 日韩精品一区二区大桥未久| 免费看一级黄色片| 成 人影片 免费观看| 永久中文字幕| 成人精品免费网站| 久99久热只有精品国产女同| 国产免费拔擦拔擦8x网址| 激情播播网| av一区二区在线播放| 精品对白一区国产伦| 五月天福利视频| 国产性网| 欧美精品久久96人妻无码| 97国产精华最好的产品| 在线观看免费av片| 精品av国产一二三四区| 欧美一区二区三区免费在线观看| 国产精品久久久久一区二区| 91av国产精品| 亚洲成人一区| 69视频网址| 日本做爰高潮视频| 国产综合色在线视频区| 亚洲乳大丰满中文字幕| 中国精品毛片| 天天尻逼| 国产交换配乱淫视频a| 国产japanhdxxxx麻豆| 91色站| 欧美黑人一级视频| 国产男女爽爽爽免费视频| 96超碰在线| 少妇高潮惨叫喷水正在播放| 久久久中文久久久无码| 国产精品自在线拍亚洲另类| 日韩人妻少妇一区二区三区| 四虎国产成人永久精品免费 | 婷婷综合少妇啪啪喷水动态小说 | 极品 在线 视频 大陆 国产| 国产乱子伦一区二区三区四区五区| 成人免费视频在线播放| 欧美性猛交xxx乱大交3| 91久久国产综合久久91精品网站| 99久久久无码国产精品试看| zzijzzijzzij亚洲人| 午夜视频a| www.天天色| 毛片av网站| 不卡av在线| 美女隐私黄www网站免费| 国产三级精品视频| 亚洲偷偷自拍高清| 国产又色又爽又黄又免费文章| 大肉大捧一进一出好爽视色大师| 激情久久av一区av二区av三区 | 日日爱夜夜操| 97国产高清| 超碰av人人| 久久久妇女国产精品影视| 女同 媚药 在线播放| 999亚洲图片自拍偷欧美| 国产做爰xxxⅹ久久久小说| 一本一道久久a久久综合精品| 精品一区在线播放| 国产特级毛片aaaaaa视频| 91av在线播放| 欧美刺激性大交| 欲色欲色天天天www| www久久com| 中文字幕手机在线视频| 中文字幕 视频一区| 国产综合第一页| 台湾十八成人网| 久久久久9| 在线观看成人无码中文av天堂| 97se亚洲综合| 巨胸喷奶水视频www| 少妇性生活视频| 丝袜 中出 制服 人妻 美腿| 色哟哟视频在线观看| 成人国产一区| 日韩一级视频在线观看| 国产男女免费完整视频| 成人av中文解说水果派| 黑人操亚洲美女| 就要日就要操| 日韩a片无码一区二区三区电影| 成人午夜激情| 产精品无码久久_亚洲国产精| 色狠狠色噜噜av一区| 亚洲 欧美 天堂 综合| 99国产欧美另类久久片| 国产毛片不卡野外视频| 午夜三级视频| 午夜性刺激在线视频免费| 人禽杂交18禁网站免费| 欧美一级艳片视频免费观看| 国产在线h| 亚洲高清毛片一区二区| 日韩精品亚洲专在线电影| 尤物tv国产精品看片在线| 亚洲毛片大全| 天天干狠狠干| 中国a毛片| 国产激情一区二区三区成人免费| 同性情a三级a三级a三级| 国产偷自视频区视频| 日韩天堂视频| 天天在线观看| 国产亚洲精品久久久久久入口| 天天干天天操心| 国产粗话肉麻对白| 无套内射极品少妇chinese| 夜夜精品无码一区二区三区| 亚洲国产最大av| 精品视频麻豆入口| 无翼乌工口肉肉无遮挡无码18| 亚洲国产专区校园欧美| 一级a爰片久久毛片| 国产精品乱码一区二区三区四川人| 国产网站大全| 午夜免费啪视频在线18| 黄色综合网| 欧美日韩成人网| 国产乱老熟视频网站 视频| 成人在线超碰| 日韩视频一区二区三区在线播放免费观看 | 少妇挑战黑人3p| 国产一级做a爰片在线看免费| 婷婷网址| 在线高清免费不卡全码| 亚洲另类欧美在线电影| 国产精品一区二区四区| 亚洲成人在线观看视频| 日韩一区二区三区免费高清| 色天堂在线视频| av看片网站| 亚洲综合av色婷婷| 久久精品97| 中文字幕第99页| 丁香五月综合久久激情 | 国产一区二区三区视频网站| 91最新国产| 初尝人妻少妇中文字幕| 亚洲女人初尝黑人巨大| 亚州中文字幕无码中文字幕| 99视频精品免视看| 一区二区三区高清| 亚洲中又文字幕精品av| 52avaⅴ我爱haose免费视频| 国产女人在线视频| 日本综合在线| 无码加勒比一区二区三区四区 | 青青操网站| 亚洲女人18毛片水真多| 日韩区欧美久久久无人区| 97久久精品人人澡人人爽缅北| 色偷偷亚洲男人的天堂| 国产麻豆精品传媒| 波多野结衣av一区二区三区中文| 日本大胆人体视频| 97精品久久久午夜一区二区三区| 精品欧美一区免费观看α√ | 男人女人午夜视频免费| 国产成人免费高清激情视频| 精品视频99| 九九av| 欧美a∨亚洲欧美亚洲| 天堂久久精品忘忧草| 亚洲欧美网址| 激情五月少妇a| 黄频在线看| 亚洲中国久久精品无码| 久久在线视频精品| 免费成人黄色片| 97久久精品人妻人人搡人人玩| 黄色在线视频网址| www啪| 丰满岳妇乱一区二区三区| 在线亚洲精品国产一区麻豆| 一本久道久久综合久久爱| 少妇高潮惨叫久久久久久电影| 黑人老外猛进华人美女| 日本xxx裸体xxxx偷窥| 国产成人夜色高潮福利app| 亚洲成人黄色影院| 亚洲黄色在线网站| 一级毛片一级黄片| 日本动漫做毛片一区二区| 亚洲精品无码不卡久久久久| 国产a网站| 欧美黑人粗大| 特黄少妇60分钟在线观看播放| 不卡视频一区二区三区| 人妻丰满熟妇av无码在线电影| 少妇性生交xxxⅹxxx| 天堂成人国产精品一区| 国产亚洲精品无码专区| 亚洲国产欧美一区三区成人| 三级全黄不卡的| 国产亚洲欧美在线| 国产内射999视频一区| 亚洲色www成人永久网址 | 情侣偷偷看的羞羞视频网站| 国产真实乱对白精彩久久老熟妇女| 国产suv精品一区二区6| 日韩三级免费看| 欧美特级黄色| 亚洲男人的天堂在线视频| 毛片的网址| 涩涩动漫视频| 春色校园激情综合在线| 国产精品久久久尹人香蕉| 另类捆绑调教少妇| 今夜无人入睡在线观看| 91欧美一区二区三区| 在线观看黄色网页| 精品国产一区二区三区久久影院 | 久久久性视频| 黄色aa一级片| 小明看平台日韩综合45页| 国产精选av| 国产嗷嗷叫| 五月天青青草| 黑色超薄丝袜脚交爽91| 国产性色av| 女主和前任各种做高h| 国产一级淫片a免费播放| 日韩va亚洲va欧美va清高| 激情五月深爱五月| 亚洲图片欧美在线| 搡8o老女人老妇人老熟| 四虎一区二区成人免费影院网址| 91欧美日韩国产| 先锋影音男人av资源| 一级特黄aaa大片| 男人一边吃奶一边做爰免费视频 | 国产高清在线精品| 性工作者十日谈| 偷看农村妇女牲交| 性欧美一区二区三区| 91精品情国产情侣高潮对白文档| 性高潮免费视频| 人成午夜大片免费视频| 国产精品 欧美 亚洲 制服| jav成人av免费播放| 四虎影视永久无码精品| 国产精品亚洲片在线| 欧美成人精品欧美一级私黄| caoporn视频在线| 牛和人交xxxx欧美| 久久精品国产免费观看三人同眠| 免费无码a片一区二三区| 热久久99热精品首页| 久久99精品久久久久婷婷暖| 色射色| 国产精品热久久无码av| 国产欧美网站| 亚洲精品久久久久久动漫器材一区 | 久久不见久久见视频观看 | 色偷偷av一区二区| 日本aⅴ片| 一区二区亚洲视频| 青青草超碰| 少妇一区二区视频| 欧美日韩一区二区精品| 国产精品美女久久久久久福利| 精品日产乱码久久久久久仙踪林| 亚洲欧美一区二区三区| 亚洲射| 美丽肉奴隷1986在线观看| 国产精品色图| 古代玷污糟蹋np高辣h文| 爱情岛论坛国产首页| 欧美日韩生活片| 精品一区二区三区在线观看视频| 久草网在线视频| 国产亚洲精品久久7788| 绫濑遥av| 免费无码av污污污在线观看| 亚洲欧美日韩国产成人一区| 1000部拍拍拍18勿入在线看| 亚洲精品手机在线观看| 久久成人a| 日本大尺度床戏揉捏胸| 2020亚洲欧美国产日韩| 国内精品久久久久影视| 免费的国产成人av网站装睡的| 无码人妻aⅴ一区二区三区日本| 亚洲 中文 欧美 日韩 在线| 久久久久久久久久久久久久| 国产精品无码一区二区在线| 91九色麻豆| 国产欧美成aⅴ人高清| 亚洲自偷自拍另类11p| 久久丫精品忘忧草西安产品| 色欲av久久一区二区三区久| 给我免费播放毛片| 中国老妇淫片aaaa| 可以免费看的黄色网址| 天天躁夜夜躁狠狠综合2020| 色诱久久久久综合网ywww| 九九最新视频完整| 熟妇与小伙子matur老熟妇e| 亚洲丝袜中文字幕| 日本免费三区| 中文字幕 视频一区| 国产传媒精品1区2区3区| 99草草国产熟女视频在线| 国产亚洲papapa| 欧美人与zoxxxx视频| av福利社| 日韩亚洲国产综合αv高清| 一区二区三区国产视频| 国内老熟妇对白xxxxhd| 97自拍偷拍| 精品国产自在精品国产精小说| 涩涩亚洲| 国产性生交xxxxx无码| 伊人热久久| av久久久久久| 亚欧乱色国产精品免费| 日韩日比视频| 亚洲成av人片在线观看wv| 欧美另类交人妖| 免费又色又爽又黄的成人用品| 国产人妻人伦精品无码麻豆| 欧美午夜免费| 国内揄拍国内精品| 亚洲性色成人av| 亚洲夜色| 美女av免费观看| 久久视频这里只精品10| 国产成人午夜精华液| 十八禁视频在线观看免费无码无遮挡骂过 | wwwav视频在线观看| 国产一级片黄色| 成人天堂| av一区二区在线观看| 亚洲三级在线看| 你懂的国产视频| 超碰在线97观看| 国产成人精品无码免费看夜聊软件| 大奶子在线| 桃色一区二区三区| 日本xx片| 在线观看国产亚洲视频免费| 永久免费的啪啪网站免费观看| 久久精品国产再热青青青| 青青青视频在线| 国产视频a| 国产成人午夜高潮毛片男男爱| 色婷婷av777| 黑人大战日本人妻嗷嗷叫不卡视频 | 国产同性野外打野战| 电影内射视频免费观看| 成人日皮视频| 国产v在线在线观看视频| 亚洲人成网站在线播放大全| 最新一区二区三区| 农村激情伦hxvideos| 少妇内射兰兰久久| 久久久国产精品无码一区二区| 国产另类精品| 1000部又爽又黄无遮挡的视频| 久久精品高清| 亚洲专区欧美| 亚洲国产成人无码av在线影院| 超碰公开在线观看| 超碰在线国产97| 国产在线视频导航| 亚洲综合精品一区二区三区| 午夜九九九| 国产av一区二区三区| 免费观看欧美猛交片| 亚洲自拍中文| 欧美激情18| 国产精品一区在线看| 狠狠操网站| 国产精品丰满| 麻豆一区二区三区| 亚洲综合精品视频| 免费国产a级片| 日韩福利片在线观看| 麻豆精品免费| 亚洲欧洲专线一区| 国产美女被遭高潮免费视频| 台湾三级毛片| www.97国产| 疯狂做爰高潮videossex| 亚洲香蕉视频综合在线| 176精品免费| 国产精品免费vv欧美成人a| 欧美肥老太牲交视频| 色网站在线| 蜜臀avwww国产天堂| 午夜免费福利小电影| 韩国极品少妇xxxxⅹ视频| 欧美一卡2卡三卡4卡乱码免费| 少妇综合网| 欧美视频二区欧美影视| 成人综合区另类小说区| 亚洲成人福利| 99伊人| 日韩三级黄| 国内精品九九久久久精品| 亚洲最大看欧美片网站| av在线伊人| 玖玖伊人| 夜夜爽亚洲人成8888| 欧美性生交xxxxx| 国产精品www夜色视频| 亚洲精品色播一区二区| 高清偷自拍第1页| 久久短视频| 香蕉综合网| 91黄在线看| 欧美黑人猛交| 天天爱综合网| 伊人福利| 国产精品入口免费视| 日韩中文字幕成人免费视频| 欧美一级久久久| 国产无人区码一码二码三mba| 我的好妈妈在线观看| 黄色动漫软件| 青青青国产免a在线观看| 亚洲人成色77777| av日韩国产| 不满足出轨的人妻中文字幕| 免费又黄又粗又爽大片69| 中文字幕人妻被公上司喝醉| 天码中文字幕在线播放| 久久久久中文| 亚洲美腿丝袜无码专区| www.日日干| 亚洲产国偷v产偷v自拍涩爱| 亚洲美女性生活| 丰满的继牳3中文字幕系列 | 欧美牲交黑粗硬大| 亚瑟av| 国产综合色在线精品| 成人一级网站| 色拍拍在线精品视频| 日韩av三区| 国产人妻一区二区三区久| 日产高清b站成品片a| 永久免费在线| 99热亚洲精品| 国产最新精品自产在线观看| 夜色阁亚洲一区二区三区| 亚洲人成电影在线播放| 国产精品高潮呻吟久久av免费动漫| 麻豆精品av| 五月色婷婷俺来也在线观看| 久久亚洲a v| 日本大香伊蕉一区二区| 少妇和邻居做不戴套视频| 好吊色在线视频| 免费观看成人38网站| 亚洲欧洲日产国码在线| 欧美丰满熟妇xxxx性ppx人交| 欧美成人一级片| 久久不卡免费视频| 天海翼一区二区| av黄色网址| 97超碰人人澡人人爱学生| 久久久久久久久无码精品亚洲日韩 | 韩国三级在线看| 亚洲福利视频网站| 久久精品国产亚洲a| 久久九九看黄一片| www.久操| 人人超碰人人超级碰国| 麻豆人人妻人人妻人人片av| 极品少妇一区二区| 亚洲你懂的| 亚洲性xx| 欧美激情xxxxx| 新版天堂资源中文8在线| 国产精品色哟哟| 伊人久久五月| 免费视频成人| 午夜精品久久久久久久99热浪潮| 牲欲强的熟妇农村老妇女视频| 欧美激情自拍| 亚洲精品久久久日韩美女极品| 四虎4hu永久免费| 天堂av国产夫妇精品自在线| 7878成人国产在线观看| 97精产国品一二三产区区别视频 | 免费毛片看片| 女人夜夜春高潮爽a∨片| 亚洲视频在线观看视频| 亚洲精品人成网线在线播放va| 干美女av| 国产精品毛多多水多| 国产精品久久久久久久久久久久午夜| 少妇伦子伦精品无码styles| 国产乱子伦视频一区二区三区| 少妇spa推油被扣高潮| 国产a精彩视频精品视频下载 | 欧美另类精品xxxx人妖| 国产亚洲欧美日韩在线三区| 国产一区二区欧美| 狠狠色狠狠色综合久久一| 啪啪69xxⅹ偷拍| 高清911专区| 97碰碰碰人妻无码视频| 日本视频网| 粗大黑人巨精大战欧美成人| 亚洲性自拍| 欧美视频h| 婷婷伊人五月尤物| 国产精品人妻熟女毛片av久| 一级片aaaaa| 亚洲国产成人精品无码区在线秒播| 久久国产精品久久精品国产| 蜜臀av性久久久久蜜臀aⅴ四虎| 亚洲国产欧美日本视频| 一区二区三区四区在线视频| 毛片内射-百度| 日本a√在线观看| 日韩在线资源| 欧美日韩久久婷婷| 性中国妓女毛茸茸视频| 高潮白浆女日韩av免费看| 国产亚洲高清视频| 亚洲欧洲日产国无高清码图片| 国产色| 亚洲乱码av中文一区二区软件| 性三级视频| 久久亚洲免费视频| 午夜天堂av| 岳睡了我中文字幕日本| 色wwwwww| 成在人线av无码免费高潮喷水| 国产九九久久| 亚洲色欲或者高潮影院| 大胆日本熟妇xxxx| 亚洲人成人无码网www电影首页| 91超碰在线观看| 亚洲红桃视频| 日韩精品一卡2卡3卡4卡新区乱码| wwww亚洲熟妇久久久久| 日本不卡视频在线| 成人性生交大片免费看96| 国产啪亚洲国产精品无码| 三级无遮挡| 韩国精品视频一区二区在线播放| 久久亚洲一区二区三区舞蹈| 大sao货你好浪好爽好舒服视频| 中文字幕亚洲欧美在线不卡| 伊人网视频在线观看| 午夜男女爽爽爽免费体验区| 欧美另类变人与禽xxxxx| 国产成人综合在线| zzijzzij亚洲成熟少妇| 免费爱爱网址| 中文字幕乱码在线播放| 亚洲狠狠爱一区二区三区| 久久丫精品久久丫| av高清在线免费观看| 在线免费看91| 农村乡下女人毛片| 日本人毛片| 久久精品国产第一区二区三区| 国产精品国产亚洲精品看不卡15 | www伊人| a在线观看免费| 久久久精品视频免费| 精品国产亚洲福利一区二区| 美女少妇翘臀啪啪呻吟网站| 国产一级18片视频| 色亚洲色图| 成人免费av影院| 国产人与zoxxxx另类| 一本色道久久88综合亚洲精品ⅰ| √天堂在线| 成人午夜视频免费| 97插插插| 亚洲人人爱| 欧美精品另类| 国产精品国产三级国产普通| 成人国产网站v片免费观看| www日韩系列| 日本xxxxx69hd日本| 国产欧美色一区二区三区| 午夜精品福利视频| 8av国产精品爽爽ⅴa在线观看| 成人在线视频免费观看| 91免费精品视频| 成人日韩视频| 亚洲精品一区二区三区四区久久| 人妻人人澡人人添人人爽人人玩| 人妖av在线| 成年人在线观看视频网站| 国产aⅴ一区二区三区| 亚洲激情片| 六月丁香婷婷综合| 天堂а√在线中文在线新版| 久久精品一区二区三区中文字幕| 婷婷91欧美777一二三区| 99视频免费| 情侣黄网站大全免费看| 精品久久欧美熟妇www| 国产精品v欧美精品v日韩精品v| 欧美群妇大交群| 91精产品一区一区三区40p| 日韩三级网址| 欧美经典影片视频中文| 做爰丰满少妇1314| 成年人黄色网址| 国产欧美激情日韩成人三区| 精品久久伊人| 97高清国语自产拍| 欧美日韩国产成人在线观看| 色狠av| 免费xxxx大片国产在线| 好湿好紧太硬了我太爽了视频 | 色999视频| 日韩男女视频| 五月天三级| 91插插插视频| 精品久久久久久国产潘金莲| 1级黄色大片儿| 无码人妻h动漫中文字幕| 亚洲激情二区| 蜜桃av噜噜一区二区三区小说| 成人精品水蜜桃| 亚洲曰韩欧美在线看片| 久久精品蜜芽亚洲国产av| 免费久久| 国产黄色免费| 国产精品一品二品| 黄色片视频免费| 亚洲精品久久片久久久久| 广州毛片| 亚洲最大av在线| 黄色一级大片在线免费看国产一| a级免费毛片| 一区二区观看| 免费无码又爽又刺激高潮的视频| 欧美成 人 在线播放视频| 婷婷国产天堂久久综合五月| 国产成a人片在线观看视频下载| 内射视频←www夜| 国产超爽人人爽人人做人人爽| 日韩一级完整毛片| 黄色爱爱视频| 午夜777| 九九九九精品视频在线观看| 亚洲国产精品综合久久20| 亚洲色图综合在线| 性生交大片免费看女人按摩摩| 欧美熟妇xxzoxxzo视频| 成人三级图片| 欧美日韩免费一区| 草草久久久无码国产专区| 18禁强伦姧人妻又大又| wwwxxx在线| 国产情侣激情在线对白| 亚洲天天综合| 亚洲乱码av中文一二区软件| 在线精品亚洲| www成人在线视频| 性做久久久久久免费观看欧美 | 欧美日韩亚洲综合| 99久热国产精品视频尤物| 亚洲国产成人字幕久久| 日日操夜夜干| 黄色网在线| 国产91色| 免费午夜福利不卡片在线播放| 国产明星精品一区二区刘亦菲| 偷偷久久| 欧美日韩黄| 福利一区二区在线| 人妻丰满熟妞av无码区| 亚洲精选在线观看| 色射视频| 2024国产精品| 国产乱码精品一区二区三区爽爽爽| 国产一精品一av一免费爽爽| 亚洲 丝袜 另类 校园 欧美| 亚洲大尺度无码无码专区| 国产精品久久视频| 日本少妇影院| 国产只有精品| 亚洲激情社区| 无码喷水一区二区浪潮av| 日韩特级黄色片| 日韩福利片午夜免费观着| 中国国产毛片| 本道久久综合无码中文字幕| 国产精品igao| 强videoshd酒醉| 日本不卡一区二区三区在线| 中国 免费 av| 午夜性色福利影院| 最近免费中文字幕| 最新欧美精品一区二区三区| 日韩va亚洲va欧美va久久| 国产精品久久久久久久久久辛辛| 色欲国产精品一区成人精品| 91国产视频在线观看| 鲁鲁夜夜天天综合视频| 国产无套露脸在线观看| 女女同性av片在线观看免费| 亚洲欧美福利视频| 国产又粗又猛又爽又黄的视频小说| 色欲久久久天天天综合网精品| 全色导航| 女同性女同3p| www.一级片| 免费一区二区三区视频在线| 国产午夜无码视频在线观看| 在线免费观看国产视频| 欧美hdse| 免费在线黄网站| 99久久99久久精品| 日韩黄色av| 56国语精品自产拍在线观看| 97精品免费公开在线视频| 涩视频在线观看| 国产在线乱码一区二三区 | 黄色福利在线观看| 四虎精品影视| 国自产偷精品不卡在线| 国内精品视频在线播放| 最新国产黄色网址| 97se亚洲综合在线| 无码一区二区三区老色鬼| 免费观看a级片| 19韩国主播青草vip| 人妻无码中文字幕免费视频蜜桃| 特黄网站| 国产精品一级视频| 亚洲欧洲av综合色无码| av十大美巨乳| 日本视频中文字幕| 天天色综网| 毛片999| 极品人妻少妇一区二区三区 | 亚洲高清视频网站| 亚洲精品自产拍在线观看亚瑟| 国产一区在线免费| 亚洲中文字幕a∨在线| 黄色av网| 亚洲区精品区日韩区综合区| 超碰国产在线| 国产高清在线精品一区免费| 午夜精品久久久久久久白皮肤| av先锋影音| 黄色片91| 青青青在线免费| 性生交大片免费看狂欲| 婷婷天堂网| 国产成人观看| 久久不见久久见免费影院3| 日韩亚洲一区二区三区| 人妻中文乱码在线网站| 精品无码国产一区二区三区麻豆| 东北妇女xx做爰视频| 亚洲成人精品一区| 六月丁香av| 视频二区精品中文字幕| 2020国产精品久久精品| 久久亚洲精品综合国产仙踪林| 久久久88| 亚洲涩视频| 人妻久久久精品99系列2021| 18禁美女黄网站色大片免费网站| 欧美日韩国产一区二区三区不卡| 国产在线网| 国产高清免费av| 亚洲区日韩精品中文字幕| 亚洲日韩精品看片无码| 国产手机在线无码播放视频| 婷婷五月六月激情综合色中文字幕| 亚洲第一区无码专区| 国产露脸精品产三级国产| 欧美大片网址| 国产成人福利在线| 拔萝卜视频在线观看高清版| 成人一区在线观看| 欧美午夜性囗交xxx╳| 日产亚洲一卡2卡3卡4卡网站| 少妇高潮喷水正在播放| 婷婷射图| 97久久精品人人澡人人爽缅北| 亚洲欧美精品久久| 国产床戏无遮挡免费观看网站| 久久亚洲精品情侣| 夜夜添无码一区二区三区| 99热在线观看| 妹子干综合| 色91在线| 俺去射| 密桃av在线| 久久免费午夜福利院| 熟女少妇在线视频播放| 丝袜国偷自产中文字幕| 波多野结衣亚洲一区二区| www色91| 色视频免费在线观看| 日韩a级片在线观看| 深爱综合网| 热99在线| 午夜福到在线a国产4 视频| 小毛片| 久久亚洲婷婷| 爱爱爱爱网| 亚洲色欲久久久久综合网 | 国产精品久久久久久婷婷天堂| 亚洲精品丝袜一区二区三区| 国产欧美日韩在线视频| 性做久久久久久| 中文天堂在线资源www| 国产a级片| aaa人片在线| 国产精品伦子伦免费视频| 91天天爽| 成人午夜福利免费无码视频| 激情五月av久久久久久久 | 玖玖玖在线观看| 亚洲熟妇少妇任你躁在线观看无码| 99色影院| xoxo国产三区精品欧美| 香蕉视频911| 免费国产在线麻豆网站| 九九国产精品无码免费视频| 狼友av永久网站免费观看| 日本网站在线免费观看| 四川老熟女下面又黑又肥| 国产人成高清在线视频99最全资源| 欧美人与动另类xxxx| 亚洲欧美日韩精品专区| 免费日韩视频| 熟女丰满老熟女熟妇| 日韩精品视频在线观看一区二区| 色婷婷成人网| 99久久影院| 激情宗合网| 理论片午午伦夜理片影院| 精品国产一区二区三区噜噜噜| 梦乃爱华av在线播放| www.亚洲免费| 亚洲精品午夜视频| 少妇视频在线播放| 成人影院中文字幕| 免费看国产成年无码av| 91系列在线观看| 欧美日韩黄色大片| 中文字幕不卡在线| 无码日韩人妻av一区免费| 国产精品嫩| 天堂网视频在线观看| 国产亚洲精品aa片在线观看网站| 新毛片基地| 97视频人人免费看| 成人性免费视频| 亚洲精品国产精品自产a区红杏吧| 亚洲高清免费视频| 午夜影院视频| jlzzzjlzzz国产免费观看| 内射巨臀欧美在线视频| 亚洲精品无码不卡在线播放| 污夜影院| 依人成人综合网| 我撕开了少妇的蕾丝内裤视频| 国产乱淫精品一区二区三区毛片| 香蕉精品在线| 美女一区二区三区| 77777_亚洲午夜久久多人| a级毛片蜜桃成熟时2免费观看| 色av资源| 丨国产丨调教丨91丨| 亚洲色图在线观看视频| 蜜芽久久人人超碰爱香蕉| 免费在线观看黄| 性色影院| 美女一级黄色片| 久久本道综合久久伊人| 国产伦精品一区二区三区免费视频| 日韩亚洲国产中文字幕欧美| 欧美丰满熟妇xxxx性| 97久久精品人人澡人人爽缅北| 国产酒店自拍| 中文字幕+乱码+中文字幕无忧| 8x国产精品视频| 成品片a人免费进入| 中文字幕不卡乱偷在线观看| 午夜精品久久久久久久四虎美女版| 欧美日韩激情视频在线观看| 草草影院最新| 欧美自拍亚洲综合丝袜| 一区二区三区在线视频播放| 亚洲精品久久av无码一区二区| 日韩有码第一页| 在线视频区| 欧美bbbbbbbbbbbb精品| 少妇人妻中文字幕污| 无码h肉动漫在线观看免费| 国产区女主播在线观看| 天堂国产精品| 久久久亚洲综合久久久久87| 性做爰视频免费播放大全| 日韩人妻熟女毛片在线看| 99久久视频| 国产乱码精品一区二区三区四川人 | 亚洲第一a在线观看网站| 成年人在线网站| 日本高清www午色夜com| 国产91综合| 肥婆大荫蒂欧美另类| 日本丰满少妇xxxx| 免费在线a| 色综合av社区男人的天堂| 在线播放成人| 中文字幕亚洲色图| www中文字幕com| 久久老女人| 色综合久久久久久久| 亚洲妇女水蜜桃av网网站| 日本免费网址| 尤物网站视频免费看| 921国产乱码久久久久久| 狂野欧美性猛交xxxx777| 人人干人人看| 欧美污污视频| 亚洲欧洲中文日韩av乱码| 超碰最新在线| 精品国产美女福到在线| 桃花综合久久久久久久久久网| 女人的毛片| 99精产国| 妺妺窝人体色www看美女| 91视频网址| 国产又粗又猛又爽又黄91| 黄色成人av网站| 亚洲综合一二三| 国产精品国产三级国产专播| 男人深夜影院| 亚洲高清免费| 亚洲欧洲中文日韩久久av乱码| 欧洲熟妇色xxxx欧美老妇多毛 | 无码少妇丰满熟妇一区二区| 免费日韩视频| 熟女人妇交换俱乐部| 国产91在线免费观看| 日本妇人成熟免费中文字幕| 欧美老熟妇又粗又大| 福利视频网址| 嫩草研究院久久久精品| 亚洲爽爆| 亚洲色成人一区二区三区小说| 久久好在线视频| 国语对白嫖老妇videos| 一本大道东京热无码视频| 色婷婷欧美在线播放内射| 地下室play道具走绳结| 区美成人aaaaa| 国产亚洲欧美一区二区三区| www.五月激情| 日韩尤物| 麻豆视频二区| 国产女人和拘做受视频免费| a v免费视频| 黄色片子免费看| 午夜男女爽爽爽免费体验区| 99久久精品久久久久久动态片| 懂色中文一区二区三区在线视频| 18成人免费观看网站| 免费的理伦片在线播放| 日本天天操| 色咪咪网站| 欧美精品一区二区三区免费视频| 欧美另类v| 日本欧美色图| 亚洲国产精品成人天堂| 国产熟女内射oooo| 日韩精品久久久免费观看| 老汉色老汉首页a亚洲| 久久综合亚洲色1080p| 9人人澡人人爽人人精品| 国产一区99| 特级a做爰全过程片| 在线a亚洲v天堂网2019无码| 麻豆视频污| 亚洲欧美成人综合图区| 天天免费啪| 久久看片| 免费在线色视频| 中文字幕无线码免费人妻| 国产区在线| 亚洲色土| 亚洲第十页| 他揉捏她两乳不停呻吟动态图| 欧美视频一区| 色综合av社区男人的天堂| 男女性高爱潮是免费国产| 国产日产欧产精品精品ai| 久久久久99精品| 又粗又硬又猛又黄网站在线观看高清观看视频| 2024国产精品| 人妻熟女一二三区夜夜爱| 51av在线| 黄色片网站在线观看| 成人网ww555视频免费看| 日韩精品一区二区三区在线播放| 黄色录像片子| 三级免费毛片| 日韩av影视大全| 8x8ⅹ国产精品一区二区| 免费看又黄又爽又猛的视频| 97涩国一产精品久久久久久久| 成品片a人免费进入| 久久久无码精品一区二区三区 | 东北老女人高潮久久91| 男女激烈床震gif动态图免费| 无卡无码无免费毛片| 久久精品免费一区二区三区 | 午夜成人影片av| 放荡富婆videos√| 日本亚洲一区| 午夜剧场免费看| 亚洲精品2| 末发育娇小性色xxxxx| 久久黄色网址| 国产乱码日产乱码精品精| 久久久久久国产精品| 国产在线观看片a免费观看| 六姐妹免费在线观看| 亚洲女同2| 亚洲卡一卡二卡三新区乱码| 婷婷狠狠久久久一本精品| 日本激情一区二区三区| 波多野结衣在线免费视频| 亚洲黄色av| 色欲香天天综合网站| 国产精品99蜜臀久久不卡二区| 久草精品在线观看| 日韩成人av在线| 黄色一级片在线播放| 欧美日韩中文字幕视频| 好爽好黄的视频| www,欧美| 精品国产成人av在线| 中文字幕无码av不卡一区| 激情网av| 97高清国语自产拍| 青青草手机视频在线观看| 国产a18片免费观看| 亚洲日韩色在线影院性色| 精品乱码一区二区三四区视频| 亚洲成本人无码薄码区| 开心久久婷婷综合中文字幕| 99热成人精品热久久| 中文人妻熟妇乱又伦精品| 九九热精品视频在线播放| 欧洲亚洲日韩性无码专区| 亚洲v欧美v国产v在线观看| 四虎院影亚洲永久| 少妇爽到呻吟的视频| 亚洲资源在线观看| 国产精品视频合集| www天天色| 免费国产高清毛不卡片基地| 久久一日本道色综合久久| 精品国产99| 国产不卡在线观看视频| 丝袜tk一丨视频vk| 秋霞福利影院| 亚洲香蕉成人av网站在线观看| 日韩欧美一中文字暮专区| 欧美三级视频在线播放| 久久成人国产精品无码| 新影音先锋男人色资源网| 亚洲中文字幕婷婷在线| 色国产精品一区在线观看| 国产精品久久久久久亚洲毛片| 黄网址在线| 亚洲精品天堂网| 色噜| 在线不卡一区二区| 婷婷综合久久狠狠色99h| 亚洲精品合集| 精品999日本久久久影院| 男女做www免费高清视频网站| 欧美人与动交tv| 无遮挡黄色| 草裙社区精品视频播放| 免费啪啪小视频| 午夜国产小视频| 成人免费一级片| 50路60路老熟妇啪啪| 91丨porny丨尤物| 毛片最新网址| 亚洲无线码高清在线观看| 午夜大尺度做爰激吻视频| 高清国产av一区二区三区| 亚洲人网| 亚洲激情婷婷| 狠狠综合久久久久尤物丿| 在线视频国产99| 国产正在播放| 黑人猛挺进小莹的体内视频| 好吊色视频988gao在线观看| 少妇裸体淫交视频免费看| 国产亚洲视频在线观看播放| 人妖精品videosex性欧美| 99re6在线观看国产精品| wwwyoujizzcom视频| 国产成人久久精品二区三区| 免费精品国产自产拍在线观看 | 日本丰满熟妇hd| 6699久久久久久久77777'7| 一本大道久久a久久精品综合1| 少妇性l交大片久久免费| 免费午夜视频在线观看| 成人无码视频在线观看大全| 天堂久久天堂av色综合 | 在线观看高清av| 久久久久四虎精品免费入口| 国产福利一区二区三区在线观看| 隔壁人妻被水电工征服| 欧美品牌jizzhd欧美| 中文字幕乱码在线| 少妇高潮交换91| 亚洲少妇第一页| 成人激情在线观看| 午夜免费播放观看在线视频| av在线播放观看| 毛片视频大全| 国产成人无码aⅴ片在线观看| 国产成人亚洲综合网色欲网久下载 | 国产午夜精品久久久久免费视| 亚洲成人av一区二区| 欧美国产成人精品二区芒果视频 | 无码人妻久久一区二区三区蜜桃| 成人久久免费网站| 四虎成人精品永久网站| 日本一区二区三区爆乳| 爱草av| www久久99| a级片免费在线观看| jyzz中国jizz十八岁免费| 大陆偷拍av| 能免费看av的网站| 国产精品久久久久久69| 97国产高清dvd| 在线看v片| 雨宫琴音一区二区三区| 国产真实在线| 亚洲精品久久久久中文字幕一区| 97视频在线精品国自产拍| 少妇被躁爽到高潮无码文| 亚洲免费区| 国产97人人超碰caoprom三级| 欧美人成在线视频| 在国产线视频a在线视频| 新版天堂资源中文www连接| 天天曰天天射| 国产www色| 人牛交vide欧美xxxx| 亚洲欧洲日本无在线码| 国产卡一卡2卡3精品推荐| 91美女视频| 久久艳片www.17c.com| 日韩午夜毛片| 一区二区在线不卡| 韩国三级bd高清中字2021| 99久久99久久久精品齐齐综合色圆| 国产露脸老熟高潮在线| 天堂中文字幕在线观看| 亚洲情涩| 欧美 图片 另类 自拍| 亚洲熟妇av乱码在线观看| 少妇啪啪高潮全身舒爽| 91免费国产精品| 久久久亚洲最大ⅹxxx| 欧美精品亚洲精品日韩已满十八| 欧美日韩经典| 成人免费看黄网站yyy456| 久久久久久三区| 精品丝袜国产自在线拍av| 色综合久久久久久久久五月| 色噜噜狠狠爱综合视频| 亚洲国产精品久久久久久久| 成人黄色免费网址| 欧美人与动牲交免费观看视频| 天堂国产欧美一区二区三区| 青青草黄色| 激情噜噜| 波多野结衣av在线观看| 日韩去日本高清在线| 亚洲中文字幕无码永久在线不卡| 人妻少妇中文字幕久久| 色偷偷88888欧美精品久久久| 国产色视频在线播放| 中文乱码35页在线观看| 日批网站在线观看| 狠狠躁夜夜人人爽天96| 手机在线一区二区| 在线看网站| 无套内射极品少妇chinese| 成人国产精品免费观看动漫| 俺去啦俺来也五月天| 国产精品ww| 黄色一级网| 欧美日本成人| 欧亚一级片| 久久亚洲在线| 51人人看| 亚洲 欧美日韩 综合 国产| 亚洲精品久久久蜜臀| 日韩字幕在线| 国产尤物人成免费观看| 精品在线免费视频| 国产午夜精品视频在线播放| 天码中文字幕在线播放| 日韩~欧美一中文字幕| 伊人春色影院| 狼人大香伊蕉国产www亚洲| 久久亚洲色www成人| 一本色道久久综合亚州精品蜜桃| 日本黄页网站| 男女性爽大片视频免费看| 69午夜免费福利| 日本系列有码字幕中文字幕| 超碰国产在线| 麻豆精品一区综合av在线| 精品久久久无码人妻中文字幕| 人与嘼交av免费| 337p日本欧洲亚洲大胆精品555588| av不卡在线观看| 日本免费高清视频| 婷婷色一区二区三区| 国产偷国产偷亚洲高清人| 在线亚洲精品| 国产精品女同久久久久电影院| 中国一级特黄真人毛片| 成人综合在线视频| brazzers欧美大波霸| 正在播放国产一区| 久久久久网址| 播色网| 五月丁香六月综合av| 午夜日本大胆裸艺术| 男女18禁啪啪无遮挡激烈网站| 免费爱爱视频| 国产在线中文| 天天狠天天添日日拍捆绑调教| 中文字幕在线视频网站| 久久一本人碰碰人碰| 国产原创中文av| 九九精品视频在线观看| 中文字幕一本一二本迫| 国产成人av影院| 亚洲综合一区中| 欧美兽交xxxx×视频| 日韩国产在线一区| 久久久久久久久97| 亚洲一片| 成人性生交片无码免费看| 国产一女三男3p免费视频| 亚洲精品成人无码中文毛片不卡| 欧美丰满熟妇xxxx性ppx人交| 韩国三级视频在线观看| 大肉大捧一进一出好爽视频mba| 日韩精品综合| 国产在线拍揄自揄视频网站| 一区免费在线| 国产成人精彩在线视频| 黄色免费的视频| 男女无套免费视频网站动漫| 精品国产sm最大网站| 欧美一级日韩| 少妇久久久久久被弄高潮| 国产白嫩受无套呻吟| 关晓彤三级在线播放| 农村女人做爰毛片| 成人一区二区三区在线| 国产无套乱子伦精彩是白视频| 无码人妻精品一区二区三区免费| 亚洲日本在线在线看片4k超清| 国产日韩未满十八禁止观看| 91视频亚洲| 国产69精品久久久久99| 婷婷精品视频| 国产一区二区视频播放| 久久色视频| 小sao货水好多真紧cao视频| a级免费黄色片| 成人网在线视频| 好男人社区影院www| 国产真实强奷网站在线播放| 免费av看| 午夜高清国产拍精品| 亚洲国产专区校园欧美| 精久国产一区二区三区四区| 精品区一区二区三区| 成年激情网| 久久网站免费观看| 国产女同视频| 色av综合av综合无码网站| 日本又黄又猛又爽免费视频 | a毛片毛片看免费| 成年视频在线| 久久成人a毛片免费观看网站| 久久深夜视频| 99在线视频观看| 色婷婷亚洲综合| 麻豆视频黄色| 亚洲乱码国产乱码精品精不卡| 97一期涩涩97片久久久久久久| 国产成人久久久77777| 120秒试看无码体验区| 无码av动漫精品一区二区免费| 麻豆果冻精东九一传媒mv| 岛国av无码免费无禁网站麦芽| 亚洲国产成| 亚洲成a人片77777精品| 国产精品成人久久久| 天堂欧美城网站网址| 日本久久久久久久做爰片日本 | 久久婷婷色综合一区二区| 91视频二区| 日本最新中文字幕| 欧美一区1区三区3区公司| 五月婷婷丁香综合| 在线观看视频免费入口| 熟妇人妻中文字幕无码老熟妇| 免费欧美黄色片| 天堂精品一区| 亚洲精品精华液一区二区| 亚欧视频在线观看| 成年人a级片| 天天色成人| 欧美变态另类刺激| 成人一区二区三区久久精品嫩草| 无码专区人妻丝袜| 精品视频免费久久久看| 三级精品视频| 日韩91在线| 天天看黄色片| 玖玖爱免费视频| 欧美成年人视频在线观看| 国产一性一交一伦一a片| 特黄特色三级在线观看| 免费观看的av| 粉嫩老牛aⅴ一区二区三区| 久草超碰| 在线日韩欧美| 国产又粗又猛又爽又黄视频 | 91在线欧美| 精品+无码+在线观看| 18禁成人网站免费观看| 无码专区久久综合久中文字幕| 久久久久国产精品人妻aⅴ果冻| 久久精品视频免费看| 91成人福利| 小龙女娇喘呻吟啊快点| 在线观看午夜福利院视频| 国产a毛片| 色婷婷av一区二区三区丝袜美腿| 久久久久久久久久久动漫| 黑料视频在线观看| 亚洲色国产欧美日韩| 青青青青在线| 欧美日韩一区二区成人午夜电影| 广东少妇大战黑人34厘米视频| 少妇又爽又刺激视频| 日韩欧美三级在线| 成人午夜sm精品久久久久久久| 美女激情av| 丰满人妻一区二区三区免费视频| 久久99热只有频精品8| 欧美级特黄aaaaaa片| 久久www免费人成—看片| 精品国模一区二区三区| 永久免费在线看片| 任你躁久久久久久妇女av| 日本a v网站| 日韩欧美一区二区三区| 久久久亚洲精华液精华液精华液| 交换一区二区三区va在线| 午夜射精日本三级| 免费观看av网址| 久久伊人草| 色射视频| 国产欧美综合一区二区三区| 国产9 9在线 | 中文| 亚洲黄色在线| www777色| www.国产91| 欧美精品 日韩| 亚洲成人黄色影院| 99久久精品免费视频| 日韩插啊免费视频在线观看| 国产极品美女高潮抽搐免费网站 | 正在播放国产对白孕妇作爱| www.精品视频| 亚洲国产丝袜在线观看| 精品无人乱码一区二区三区的优势| 懂色av一区在线播放| 国产精品久久久久久久久久iiiii| 亚洲精品字幕| 欧美性受xxxx| 免费日本特黄| 日韩 欧美 亚洲 精品 少妇| 国产破处av| 五月天丁香社区| 久久99热只有频精品6狠狠| 日出水了特别黄的视频| 色女综合| 日本一级特黄aa大片| 天堂中文8| 中文字幕在线视频一区| 亚洲精品成人a8198a| 精品福利在线| 性仑少妇av啪啪a毛片| 3d动漫精品啪啪一区二区| 青草青视频| 久久久一本精品99久久精品66直播| 在线观看一区二区三区四区| 无码人妻精品中文字幕| 91成人在线免费视频| 国产成人av在线婷婷不卡九色| 小婕子伦流澡到高潮h| 1级黄色毛片| 97久久久| 色婷婷狠狠97成为人免费| 日韩综合无码一区二区| 日日插夜夜爽| 亚洲国产精一区二区三区性色| 日韩中文字幕亚洲欧美| 国产在线拍偷自揄拍无码| 色婷婷五月综合激情中文字幕| 青青草草青青草久久草| 小sao货揉揉你的奶真大电影| 日韩中文字| 护士人妻hd中文字幕| 天天激情| 精品理论片| 天堂资源在线官网| 久久久6精品成人午夜51777| 老司机精品久久| 少妇熟女久久综合网色欲| 男女高潮网站| 无码免费一区二区三区| 热久久久久久| 精品视频一区二区三区在线观看| 亚洲欧美偷国产日韩| 亚洲精品乱码久久| 欧美人与性禽动交情品| 成色网| 欧美在线专区| www国产亚洲精品久久网站| 日韩经典在线观看| 亚洲爆乳成av人在线蜜芽| 欧洲色播| 欧美精品日韩| 欧美绿帽合集xxxxx| jjzz黄色片| 四虎精品8848ys一区二区| 欧美日本韩国一二区视频| 欧美日韩国产成人在线观看| 免费无遮挡禁18污污网站| 四虎影| 国产传媒资源网站| 久久xxxx| 嫩草视屏| 永久免费在线| 91视频 -- 69xx| √天堂中文官网8在线| 久久久成人毛片无码| 午夜一区欧美二区高清三区| 欧美高清一区三区在线专区 | 日本特黄特色特爽大片| 亚洲欧洲国产成人综合在线| 伊人久久无码中文字幕| 欧美日韩精品一区| 亚洲爱婷婷色婷婷五月| 亚洲欧美精品在线| 91在线无精精品一区二区| 99热这里只有是精品2| 丰满岳乱妇久久久| 国产精品一二| 四个黑人玩一个少妇四p| 在线网站av| 夫妇交换性三中文字幕| 狠狠综合久久av一区二区| 日韩精品久久久| 欧美三级不卡在线播放| 日韩a在线播放| 91精品视频免费观看| 亚洲男人成人性天堂网站| 亚洲123区| 欧美欧美欧美欧美| 少妇高潮无套内谢麻豆传| julia一区二区| 亚洲欧美色视频| www浪潮avcom| 毛片在线免费| 免费一级一片| 亚洲欧美日韩一区| 青青免费在线视频| 成人精品免费视频在线观看| 成人片国产精品亚洲| 精品久久久久久久久久久久| 哺乳一区二区久久久免费| 日韩成人久久| 午夜精品欧美| 特黄特色大片免费视频观看| 免费一级特黄特色的毛片| 日本wv一本一道久久香蕉| 成人国产精品一区二区视频| 亚洲中文字幕无码第一区| 欧美乱妇视频| 成人免费观看做爰视频ⅹxx| 五月av| 国产清纯美女白浆在线播放| jizz成熟丰满日本少妇| 欧美日韩乱| av综合在线观看| a级片久久久| 国产激情免费视频| 欧美日韩成人精品| 欧美日韩天堂| 久久久黄色网| 内射干少妇亚洲69xxx| 亚洲天堂男人影院| 无收费看污网站| 丰满少妇一区二区三区专区| 日本高清三区| 在线a亚洲老鸭窝天堂av高清| 成人娱乐网| 国产乱人伦偷精品视频下| 刘玥91精选国产在线观看| 亚洲综合天堂一区二区三区| www欧美成人| 欧美动态色图| 亚洲第一综合网站| 国产一级做a爰片久久毛片99| 黄网免费在线观看| 特黄色毛片| 国产色欲色欱www在线| 国产视频你懂得| 国内午夜熟妇又乱又伦| 国产网站精品| 日韩国产一区二区| 国产精品美女久久久av超清| 国产粉嫩在线| 成人自拍网| 男人的天堂va在线无码| 久草福利在线观看| 性高湖久久久久久久久aaaaa| 亚洲аv电影天堂网| 人人妻人人澡人人爽欧美一区九九| 韩国三级在线观看久| 97久久免费视频| 一区二区国产高清视频在线| 无码av波多野结衣久久| 女人爽到高潮免费看视频| 国产玖玖玖九九精品视频靠爱| 日韩精品一区中文字幕| 久久综合日本| 女性高爱潮有声视频| 亚洲国产一区二区在线观看| 超碰在线观看91| 久章操| 97久久国产成人免费网站| 熟女少妇在线视频播放| 天天爱天天做天天大综合| 男人的网站在线观看| 青青草在在观免费福利线观看| 国产精品亚洲a∨天堂不卡| www色视频| 91在线成人| 激情xxxx| 亚洲私人影院| 五月婷久久综合狠狠爱97| 成人免费无码大片a毛片抽搐色欲| 自拍日韩亚洲一区在线| 国产中文字幕一区二区| 日本三级一区| 日韩另类av| 香蕉视频1024| 日本久久久www成人免费毛片丨| 成年午夜精品久久久精品| 欧美日韩国产二区| 91亚洲视频在线| 超碰免费成人| 变态另类先锋影音| 久久久精品国产免费观看一区二区| 性娇小13――14欧美| 亚洲欧美另类在线图片区| 亚洲精品无码成人a片| 国产亚洲产品影视在线产品| 一级aa毛片| 99国语露脸久久精品国产ktv| 亚洲国产精品999| 天堂√在线中文最新版| 99久久一区二区| 国产中年夫妇激情高潮| 国产成人毛片| 国产亚洲精品久久久久久国| 顶级欧美熟妇xx| 亚洲精品蜜桃久久久久久| 国产精品久久久久久在线观看| 美女露隐私免费网站| 成人一级黄色| 美女隐私黄www网站免费| 成人无码av网站在线观看| 亚洲男女在线观看| 国内av在线播放| 国产成人亚洲日韩欧美性| 日产欧产美韩系列久久99| 国产精品99久久久久久宅男| 久久久久在线观看| 女人高潮流白浆视频| 91热爆视频| 国产精品黄色大片| 久久影视久久午夜| 国产黄色免费视频| av青青草原| 亚洲国产成人无码电影| 国四虎影2020| 亚洲精品中文字幕无码蜜桃| 久久色资源网| 久久伊人五月丁香狠狠色| 看毛片的网址| 天天摸夜夜添夜夜无码| 91看视频| 国产伦理精品一区二区三区观看体验| 久久55| 91视频黄| 日韩在线天堂| √最新版天堂资源在线| 亚洲欧洲自拍拍偷精品 美利坚| 久久97视频| 欧美jiizzhd精品欧美| 日韩人妻无码一区二区三区| 超碰老司机| 日韩资源网| 野外做受三级视频| 国产一及片| 美女国产网站| 国产迷姦播放在线观看| 久久的爱久久久久的快乐| av视屏| 无码人妻精品专区在线视频| 风间由美av| 中文字幕免费在线| 人人人射| 青青草原av| 国产精品久久久一区麻豆最新章节 | 日本爽快片100色毛片| 香蕉视频免费看| 久久成人影院精品777| 日本国产制服丝袜一区| 噜噜噜av久久| 日本又紧又色又嫩又爽的视频| 一区二区三区回区在观看免费视频| 蜜臀av中文字幕| 激情网综合| 国产精品一区二区国产主播| 日韩欧美在线一区二区| 麻豆安全免费网址入口| 国产高清美女一级a毛片久久w| 亚洲综合狠狠丁香五月| 少妇裸交aa大片| 免费久草视频| 国产美女极度色诱视频www| 超碰国产97| 久久久精品免费视频| 国产一区二区黄色| 上原亚衣av一区二区三区| 亚洲爆乳成av人在线蜜芽| 色com| 91高跟黑色丝袜呻吟动态图| 亚洲精品国产精品乱码不卡√香蕉 | 亚洲日韩国产av无码无码精品| 亚洲愉拍自拍另类天堂| 久久久精品国产免费观看一区二区| 国产午夜精品免费一区二区三区| 国产在线视频一区二区三区98| 小视频在线看| 躁躁躁日日躁2020麻豆| 欧洲丰满少妇a毛片| 99久久精品国产同性同志| 男人天堂色| 久久黄色一级视频| 国产精品福利影院| 特级黄色一级片| 国产中年夫妇激情高潮| 天天看a| 黄网站色大毛片| 日韩女优中文字幕| 九一精品视频| 黄色三级三级| 亚洲国产精品一区二区制服| 特一级黄色毛片| 男人和女人黄 色大片| 性激烈的欧美三级视频| 永井玛利亚 精品 国产 一区| 国产激情啪啪| 亚洲综合色吧| 女人高潮a毛片在线看| 国产免费二区| 成人h动漫精品一区二区器材| 免费在线黄色片| av黄| 深夜福利影院| www成人在线观看| 日韩一区免费| 久热精品在线观看视频| 欧美在线性| 天天操中文字幕| 久久av在线影院| 国产免费网| 亚洲国产欧美日韩另类| 国产卡一卡二卡三精品| 噼里啪啦国语影视| 国产毛片毛片毛片毛片| www.啪| 91看片淫黄大片91桃色| 久久久久人妻一区二区三区vr| 国产精品无需播放器在线观看| av在线免费网站| 国产亚洲精品一区在线播放| 亚洲一卡二卡三卡四卡| 国产精品一区二区性色av| 色综合色欲色综合色综合色乛| 无遮挡h肉视频在线观看免费资源| 国产精品自拍区| 日韩av在线高清| 亚洲人成网址在线播放小说| wwwav在线com| 国产av天堂亚洲国产av天堂| 日韩人妻无码一区二区三区| 伊人久久成人爱综合网| 国产美熟女乱又伦av果冻传媒| 亚洲人亚洲人成电影网站色| 天天摸天天做天天爽2019| 高清午夜福利电影在线| 国语自产少妇精品视频蜜桃| 亚洲人成网线在线播放va| 久久久久琪琪去精品色无码| 成年丰满熟妇午夜免费视频| 亚洲精品乱码久久久久66| 九一国产精品| 日本三级少妇| 亚洲国产精品久久亚洲精品| 成人乱人伦精品小说| 成人羞羞国产| 国产一区二区三区色淫影院| 国产免费黄色小视频| 激情丁香六月| 久久激情av| 欧美成人精品网站| youjizzcom国产| 欧美在线一二三四区| 欧洲精品一区二区三区| 欧美mv日韩mv国产网站app| 特大黑人巨交吊性xxxx视频| 综合黄色| 欧美bbbbb| 亚洲国产av久久久| 国产真人性做爰久久网站| 国产精品国产a级| 嫩草亚洲| 天天躁日日躁狠狠躁人妻| 亚洲精品国产精品成人不卡| 日韩中文字幕在线免费观看| 国产精品 欧美精品| 久久久久国产精品无码免费看| 特级a欧美做爰片黑人| 在线精品一区二区三区| 亚洲国产成人最新精品| 真实偷拍激情啪啪对白| 合欢视频在线观看| 亚洲黄色在线| 亚洲国产一区二| 成人网在线视频| 亚洲人毛耸耸少妇xxx| 中文字幕在线网| 亚洲色图50p| www.日批| 免费av在线播放网址| 国产一区二区黑人欧美xxxx| 丰满的少妇xxxxx青青青| 日日爽夜夜爽| 国产美女亚洲精品久久久毛片小说| 精品女同一区二区三区在线| 成人福利在线看| 国产高清精品在线观看| 看全黄大色黄大片美女| 亚洲伦理视频| 国产成人av在线播放| 日韩毛片网站| 一级全黄色片| 奇米影视第4色| 一本加勒比hezyo综合| 美国一级大黄一片免费的网站| 男女啪啪无遮挡免费网站| 18禁黄污无遮挡无码网站| asian日本若图pics| 国产亚洲精品久久久久久久久久| 欧美骚少妇| 新超碰97| 国产日产欧产精品网站| 亚洲桃色综合影院| 66av99精品福利视频在线| 国产精品久久久久久无毒偷食禁果| 久久网页| 国产v亚洲v天堂无码网站| 57pao成人国产永久免费视频| 调教女少妇二区三区视频| 日本人成网站18禁止久久影院| 日本三级日产三级国产三级| 日本不卡在线观看| 伊人情人色综合网站| 98色婷婷在线| 欧美激情做真爱牲交视频| 久久久免费在线观看| 亚洲色精品aⅴ一区区三区| 九九热视频在线观看| 欧美日韩亚洲精品瑜伽裤| 蜜桃91丨九色丨蝌蚪91桃色| 亚日韩av| 亚洲欧美中文日韩v在线观看不卡| 久热色| 特黄一级淫片| 绝色美妇性调教沦为玩物| 九九热精品国产| 黄色免费国产| 暴操白丝美女| 99蜜桃在线观看免费视频网站| 亚洲黄色三级| 一进一出下面喷白浆九瑶视频| 在线综合色| 国产91精品久久久| 粉嫩少妇内射浓精videos| 国产未成满18禁止免费看| 日韩精品无码一区二区视频| 精品精品国产欧美在线小说区| 一本大道精品视频在线| 日韩伦理大全| av簧片| 日本免费一区高清观看| 欧美操日韩| 日产a一a区二区www| av一区二区三区人妻少妇| 亚洲精品成人区在线观看| 巨大乳沟h晃动双性总受视频一区| 无码人妻日韩一区日韩二区| aa视频免费观看| 欧美日韩在线视频免费观看| 国产jizz视频全部免费软件| 亚洲综合区小说区激情区| 国产卡一卡二卡三无线| www黄色| 久草网在线视频| 婷婷五月在线视频| 嫩草欧美曰韩国产大片| 亚洲精品污一区二区三区| 久久天堂综合亚洲伊人hd妓女| 亚洲国产精品日韩av不卡在线| www.精品在线| 天天干夜夜欢| 精品国产亚洲一区二区三区| 精品一卡二卡三卡四卡| 一级a性色生活片久久毛片| 国产精品免费_区二区三区观看| 免费无码观看的av在线播放| 天堂网在线最新版www| 亚洲三区在线观看无套内射| 国产在线精品无码av不卡顿| 欧美中文字幕在线播放| 欧洲丰满少妇a毛片| 日本高清免费在线视频| 无码中文字幕日韩专区| 亚洲日韩va无码中文字幕| 天堂少妇| 日韩人妻无码一区二区三区综合 | 少妇性i交大片免费| 久久久一本精品99久久精品66直播| av中文在线天堂| 草的我好爽| 黑人粗一硬一长一进一爽一a级| 自拍偷拍21p| 久久草在线精品| 国内精品久久久久精免费| 免费无码又爽又刺激高潮软件| av噜噜在线| 黄色片一区二区| 肉色丝袜一区二区| 青青青青青操| 亚洲乱码国产乱码精品精98午夜| 日日大香人伊一本线久| 特级西西444www大精品视频| 欧美婷婷六月丁香综合色| 国产毛片精品av一区二区| 视频二区丝袜国产欧美日韩| 日韩亚洲制服丝袜中文字幕| 最新69国产成人精品视频| 91www| 99久热re在线精品视频| 日韩aⅴ人妻无码一区二区| 无码写真精品永久福利在线| 九月激情网| 在线观看成人免费| 无遮挡aaaaa大片免费看| 琪琪777午夜理论片在线观看播放 男女一进一出超猛烈的视频不遮挡在线观看 | 曰本又大又粗又黄又爽的少妇毛片 | 五月天综合色| 国产乱对白刺激视频| 国产日韩成人| 国产一区二区三区免费观看网站上| 都市激情亚洲色图| 性欧美麻豆| 午夜视频网| 性欧美一级| 日韩欧美高清一区| 日本三级手机在线播放线观看| 午夜精品久久久久久中宇牛牛影视| a∨在线视频播放| 成年女人黄小视频| 亚洲色图28p| 狠狠色综合网久久久久久| 成熟女人特级毛片www免费| 亚洲免费视频一区二区| 天天草天天爽| 噜噜久久噜噜久久鬼88| 久久久精品国产免费观看一区二区| 艳妇乳肉豪妇荡乳av| 欧美性猛交xxxx免费视频软件| 国产91极品| 国色精品卡一卡2卡3卡4卡在线| 少妇性生交xxxⅹxxx| 色老头网址| 看黄网站在线观看| 天天在线看无码av片| 天天超碰| 日韩三级黄色毛片| 天天操人人干| 欧洲一区二区在线观看| 成人性生交7777| 国产精品1024| 国产嫩草在线观看视频| 天天干天天色天天| 国产特级毛片aaaaaa视频| 成人黄色激情视频| 国产成人拍拍拍高潮尖叫| 夜鲁夜鲁夜鲁视频在线观看| 日韩中文在线观看| 欧美成年性h版影视中文字幕| 天堂网www在线资源中文| 亚洲第一天堂影院| 女人天堂网| 狠狠插av| 丝袜a∨在线一区二区三区不卡| 久久av网站| 国产精品超清白人精品av| 亚洲日韩va无码中文字幕| 亚洲精选在线| 男女国产视频| 国产国拍精品亚洲| 欧美老妇疯狂xxxxbbbb| www.久久久精品| 久久无码av三级| 麻豆剧场| 91com在线观看| 国产中文视频| 亚洲色无码播放亚洲成av| 亚洲一区欧洲一区| 国产精品区一区二区三含羞草| 国产午夜精品视频| www91视频com| 成人手机看片| 欧美做爰全过程免费看| 亚洲一级片| 日韩av成人免费看| 一区二区三区有限公司| 亚洲综合图片区自拍区| 桃花色综合影院| 欧美夜夜夜| 91天天爽| 久激情内射婷内射蜜桃| 成人黄色三级| 东京热一区二区三区无码视频| 成人mv在线观看| a毛片在线观看| 婷婷五月日韩av永久免费| 精品国产一区二区三区av孞弋 | 六月色婷婷| 黑人30厘米少妇高潮全部进入| 九色蜜桃臀丨porny丨自拍| 成人做爰高潮尖叫声免费观看| 国产亚洲精品电影网站在线观看| 国产成人精品三级麻豆| 亚洲熟妇av午夜无码不卡| 成人性生交大免费看| 青青色在线观看| 亚洲熟妇av午夜无码不卡| 91在线看视频免费| 黑色丝袜脚足国产在线看| 波多野结衣黄色| av激情亚洲男人的天堂国语| 国产亚洲精品第一综合不卡| 免费激情视频网站 | 国产精品久久久久久久久久98 | 人妻熟妇乱又伦精品视频| 欧美不卡高清一区二区三区| 免费一区二区| 国产污视频网站| 中文字幕一区二区三区av | 亚洲精品1卡2卡三卡4卡乱码| 91久久久久久久久久| 一边吃奶一边添p好爽高清视频| 1区2区3区4区产品不卡码网站| 人人妻人人澡人人爽不卡视频| 四虎国产精品永久在线动漫| www.毛片com| 国产老女人91精品一区| 免费福利在线视频| 久久国产精品大桥未久av| 麻豆国产成人av在线播放欲色| 手机看黄av免费网址| 人与兽黄色毛片| 日本高清视频在线播放| 黄色国产| 国产性色的免费视频网站| 97视频一区| 北条麻妃在线一区二区韩世雅| 亚洲欧洲日韩综合色天使| 杂技xxx裸体xxx欧美| 91淫黄大片| 顶级少妇做爰视频在线观看| 四虎影院黄色| youjizz自拍| 欧美性受xxxx黑人猛交88| 成人午夜亚洲精品无码区| a毛片基地| 免费看国产曰批40分钟| 九九免费| 性欧美video另类hd尤物| 97在线精品视频免费| 国产一区二区三区色淫影院| 91国内在线视频| 亚洲免费福利在线视频| 97色婷婷| 亚洲精品在线播放视频| 亚洲精品久久久蜜桃网站| 国产精品太长太粗太大视频| 亚洲a级在线观看| 国产麻豆精品传媒| 噜噜噜在线观看免费视频日本| a欧美在线| 老湿午夜免费yin22xyz| 亚洲欧洲精品成人| 成人午夜亚洲精品无码网站| 无码人妻精品丰满熟妇区| 波多在线视频| 亚洲毛片一区| 啪啪网视频| 天天摸天天舔| 天天插日日插| 久久伊人精品一区二区三区| 2022天天躁狠狠燥| 日本三级做a全过程在线观看 | 国产女主播福利| 久久国产av影片| 免费全部高h视频| 虎白女粉嫩尤物福利视频| 久久精品国产精品亚洲毛片| 久久人人爽人人片| 亚洲国产aaa| 亚洲午夜久久久影院伊人| 一区精品在线观看| 国产精品入口香蕉| 九色视频丨porny丨丝袜| 天美传媒精品1区2区3区| 一本免费视频| 一区二区三区久久久| 国产精品熟妇视频国产偷人| 成人免费a视频| 亚洲va中文字幕| av资源站最新av| 国产制服日韩丝袜86页| 一级精品视频| 国产在热线精品视频99公交| 性色a∨人人爽网站hdkp885| 亚洲天堂网站| 久热这里只精品99国产6-99re视…| 亚洲欧美日韩成人综合网| 亚洲一码二码三码精华液| 伦理片免费完整片在线观看| 黄色毛片毛茸茸| 狠狠v欧美ⅴ日韩v亚洲v大胸| 日韩人妻无码系列专区| 欧美国产日韩久久| 久久草在线精品| 台湾无码av一区二区三区| 国产成人夜色高潮福利影视| 免费看操片| 毛片网站在线| 国产精品免费看久久久无码| 麻豆视传媒精品av在线| 强行交换配乱婬bd| 午夜av片| 国产精品乱轮| www.色中色| 精品视频一区二区三区四区五区 | 国产精品高潮呻吟久久av黑人| 欧美多毛肥妇视频| 黄色网址在线免费| 韩国中文三级hd字幕| 欧洲精品视频在线| 日韩欧美激情视频| 国产小视频免费观看| 手机在线看片国产| 美女黄视频网站| 真人第一次毛片| 国产日韩精品久久| 成熟人妻av无码专区a片| 夜夜骑首页| 日本在线视频二区| 成人羞羞视频在线看网址 | 日韩中文一区二区三区| 50路60路老熟妇啪啪| 欧美老妇人与禽交| 日韩欧美国产一区二区三区| 超级黄18禁色惰网站| 日韩va| 国产精品77777竹菊影视小说| 日本啪啪网站永久免费| 三级在线网址| 国产免费爽爽视频| 男人激情网| 亚洲图片一区二区| 久久尤物免费一区二区三区| 性开放按摩bbwbbw视频| 国产亚洲视频在线观看| 美女二区| 成年美女黄网站18禁免费| 极品久久久久久| 欧美视频一二三区| 亚洲精品入口a级| 免费播放毛片| www日本tv| 青青草成人在线| 青青草社区视频| 婷婷中文| 国产黄色网络| 新天堂网| 无码内射成人免费喷射| 久久精品青草社区| 国产av无码日韩av无码网站| 天天添天天操| 亚洲经典三级| а天堂中文最新一区二区三区| 久久精品娱乐亚洲领先| 夜色约爱网站| 可以免费观看的av网站| 婷婷亚洲一区| 国产精品视频一区二区三区四区国| 天天躁日日躁狠狠躁av麻豆男男| 亚洲人成人77777网站| 无套无码孕妇啪啪| 国产精品视频网站| 久久天天躁拫拫躁夜夜av| 色欧美日韩| av动漫网| 亚洲精品国产一区二区的区别| 成年女人毛片免费视频| 久久国产成人午夜av影院武则天| julia一区二区| 乌克兰18极品xx00喷水| 捆绑白丝粉色jk震动捧喷白浆| 无码全黄毛片免费看| 亚洲啪啪| 午夜性生大片免费观看| 亚洲在线视频观看| 操批网站| 麻豆国产一区| 1024毛片基地| 亚州精品av久久久久久久影院| 欧美性插插| 黄色影片在线看| 大学生三级中国dvd| 91调教视频| 国产精品久久久久久在线观看| 天天激情| 少妇高潮灌满白浆毛片免费看| 97欧美视频| 一本精品中文字幕在线| 天堂中文资源在线| 一二三区精品视频| 亚洲高清专区日韩精品| 秋霞在线观看片无码免费不卡| 国产一国产aa毛片| 久操网站| 鲁鲁久久| 精品a在线| 亚洲精品99久久久久久| 国产成人永久免费视频网站| 又欲又肉又黄高h1v1| 亚洲人成色在线观看| 亚洲日韩中文字幕| 国产午夜精品理论片久久影院| www91香蕉| 精品无码中文视频在线观看| 免费日韩在线| 六月丁香啪啪| 国产原创精品| 男人av的天堂| 国产1区2区3区中文字幕| 成人一级免费视频| 想要xx·m3u8色视频| 男女车车的车车网站w98免费| 动漫av一区二区在线观看| 亚洲精品久久久久久久蜜桃臀| 国产在线精品国偷产拍| 爱爱视频免费看| 欧洲丰满少妇a毛片| 亚洲欧美综合精品成人导航| 国产精品高潮av| 拔萝卜视频在线观看高清版| 天天舔天天干| 久久久在线观看| 成人小说亚洲一区二区三区| 看毛片网站| 国产高中女学生第一次| 91久久夜色精品国产九色 | 国产精品传媒在线观看| 国产亚洲va在线电影| 精品久久久久久18免费网站| 2024国产精品视频| 精品福利在线| 午夜精品无人区乱码1区2区| 国产爆乳美女娇喘呻吟| 男人天堂999| 91精品一线二线三线| 调教丰满的已婚少妇在线观看| 我们高清中文字幕mv的更新时间| 337p日本欧洲亚洲大胆人人| 刘亦菲裸体视频一区二区三区| 黄色av一区二区| 538porn精品视频在线| 黑人巨大跨种族video| 亚洲欧美精品aaaaaa片| 成人av毛片| av在线不卡免费| 中文字幕一区二区三区在线播放| 亚洲高清最新av网站| 中文字幕不卡乱偷在线观看| 国产大学生av| 久久月本道色综合久久| 久艾草久久综合精品无码| 4438x全国最大色| 亚洲欧洲精品成人久久av18| 极品少妇被猛得白浆直喷白浆小说 | 成人性生交大片免费看96| 99产精品成人啪免费网站| 国产午夜永久福利视频在线观看| 国产激情av在线| 午夜剧场欧美| www.国产.com| 国产黄色毛片视频| 青青在线精品| 一本大道香一蕉久| 国产精品亚亚洲欧关中字幕| 羞国产在线拍揄自揄视频| 亚洲情侣偷拍激情在线播放| 九九九国产| 97香蕉碰碰人人澡人人爱| 欧美牲交黑粗硬大| 交视频在线播放| 精品成人一区| 亚洲午夜久久久久久久久红桃| 黄页嫩草| 高清国产在线拍揄自揄视频 | 亚洲欧洲日产国码韩国| 亚洲a视频| 成人性生活毛片| 亚洲三级香港三级久久| 看免费黄色一级片| 永久黄色网址| 琪琪电影午夜理论片八戒八戒| 欧美 国产 综合 欧美 视频 | 欧美熟妇精品一区二区三区 | 久草福利免费| 成人免费在线| 18禁止观看强奷免费国产大片| a毛片毛片看免费| 精品动漫av| a在线观看免费| 久久久男女| 一区二区免费在线| 亚洲永久网站| 情趣内衣a∨片在线观看| 国产精品毛片在线完整版| 特级做a爰片毛片免费看无码| 日本老妇性生活| 黄色av网站在线观看| xvideos亚洲网站入口| 国产精品特级露脸av毛片| 成人做爰在线观看| 男人到天堂在线a无码| 亚洲午夜久久久久久久久电影网| 亚洲午夜福利在线观看| 久久久久人妻啪啪一区二区 | 国产精品aaa| 大奶毛片| www.天天射| 特级无码毛片免费视频尤物| 久青草无码视频在线播放| 亚洲精品成人av| 毛片av网站| 一级伦理片| 污污又黄又爽免费的网站| 中文字幕在线视频一区| 麻豆tv在线| 亚洲视频一区二区三区四区| 2022国产在线无码精品| 亚洲欧美日韩成人在线| 在线成人免费视频| 五月丁香综合缴情六月小说| 欧美肥熟妇xxxxx| 4hu四虎永久在线观看| 黄色无毒网站| 久久视频免费观看| 精品9e精品视频在线观看| aaa天堂| 熟妇的奶头又大又长奶水视频| 精品国产免费人成电影在线看| 久久久久久久久女人体 | 男女拔萝卜免费观看| 亚洲精品一区二区三区四区手机版| 亚洲男人天堂网址| 久久精品中文字幕无码| 久久久综合精品| 日本美女视频网站| 成人妖精视频yjsp地址| 久久成人精品视频| 狠狠插av| 国产精品成人a区在线观看| 国产在线观看免费视频今夜| 国产丝袜视频在线| 国产av久久人人澡人人爱| 五月花成人网| 一区二区三区国产在线观看| 久久亚洲精品国产精品777777| 激情综合一区二区三区| 99黄视频| 色窝av| 友田真希一区二区| 亚洲国产欧美在线观看| 国产乱人伦偷精精品视频| 欧美亚洲国产日韩一区二区| 欧洲亚洲一区| 极品尤物被啪到呻吟喷水| 国产亚洲欧美人成在线| 亚洲色欲一区二区三区在线观看| 欧美成人黄色网| 久久婷婷五月综合色精品| av毛片在线看| 在线 | 麻豆国产传媒61国产免费| 欧美伊人久久大香线蕉综合| 亚洲成a人片在线观看你懂的 | 青青草原综合网| 爱情岛亚洲论坛福利站| av一二三区| 在线人成免费视频69国产| 国产成人精选视频在线观看| 可以看的毛片| 夫妻性生活自拍| 国产福利不卡| 强奷妇系列中文字幕| 亚洲一区二区三区不卡视频| 乱码av麻豆丝袜熟女系列| 狠狠干网站| 国产v在线观看| 亚洲中文综合网五月俺也去| 欧美一区二区三区色| 亚洲三级黄| 成人看片在线观看| 成人在线视频网| 丰满人妻无码∧v区视频| 拔擦拔擦8x海外华人永久| 日韩精品无码综合福利网| 日本大尺度激情做爰电2022| 亚洲精品成人片在线播放| 狂猛欧美激情性xxxx大豆行情 | 日韩国产小视频| 成人啪啪高潮不断观看| 久久综合九色综合97伊人| 国产又黄又猛的视频| 亚洲第一在线播放| 18涩涩午夜精品www| 国产免费999| 午夜日本大胆裸艺术| 天天干天天色综合网| 91在线丨porny丨国产| 新中文字幕| 3344久久日韩精品一区二区| 亚洲看| 免费热情视频| 国产一区91精品张津瑜| 香蕉视频成人在线| 麻豆视频免费入口| 久久久亚洲精品石原莉奈| 国内精品久久久久久久电影视| 国产真实伦对白全集| 日韩精品一区二区三区视频| 亚洲天堂1| avav国产| 亚洲国产91| 日本系列有码字幕中文字幕| 一级免费片| 欧美三级韩国三级日本一级| 成人毛片无码免费播放网站| 少妇视频网站| 色哟哟视频在线| 亚洲精品无码久久久久秋霞| 国产女人与公拘交在线播放| 天天摸天天摸天天天天看| 婷婷去俺也去| 国产一级免费av| 久久久精品| av动漫无码不卡在线观看| 久章草在线观看| 久久久资源| 五月花综合网| 国产一区二区日韩| 男女aa视频| 国产在线最新| 少妇高潮无套内谢麻豆传| 亚洲综合无码精品一区二区三区| 亚洲区日韩精品中文字幕| 国产精品对白刺激久久久| 国产高清区| 欧美色图偷窥自拍| 一级aaa级毛片午夜在线播放| 色网站在线| 手机av网| 国产香蕉网| 婷婷中文字幕在线| av天堂午夜精品一区| xxxx在线观看视频| 狠狠躁夜夜躁人人爽天天天天| 少妇人妻14页_麻花色| 高清不卡视频| 日韩色片在线| 在线a毛片| 老司机伊人| 欧美一区二区三区网站| 2022国产精品| 一区二区高清视频| 国产精品人人做人人爽| 亚洲七久久之综合七久久| 免费人成网站在线观看欧美| 亚洲精品国偷拍| 女同免费毛片在线播放| 亚洲一区 欧美| 少妇饥渴偷公乱第32章| 亚洲欧美成人| 亚洲国产成人精品福利| av免费在线观看不卡| 国产欧美日本亚洲精品一5区| 超碰在线人| 成人a区| 日本三级视频网站| av大片网址| 久久96热在精品国产高清| 日本高清色本在线www| 巨肉高h文从头做到尾肉短文| 91日本在线| 日产精品卡二卡三卡四卡乱码视频| 亚洲综合五月天婷婷丁香| 爱操综合| 在线高清理伦片a| 精品久久久久久久久久久aⅴ| 亚洲天堂bt| 最新中文无码字字幕在线| 人成免费a级毛片| 在线a亚洲v天堂网2018| 国产欧美精品国产国产专区| 精品色| 天码中文字幕在线播放| 免费看男女做爰爽爽视频| 黄色av高清| 无码专区视频中文字幕| 可以免费看的黄色网址| xxxx少妇高潮毛片新婚之夜| 一本大道在线一本久道视频| 超碰男人| 亚洲少妇中出| 综合网久久| 日韩中字幕| 69xx国产| 亚洲精品久久久日韩美女极品| 国产免费视频青女在线观看| 亚洲精品视频播放| 久久精品中文字幕无码绿巨人| 国产四区视频| 亚洲欧美少妇| 午夜精品福利视频| aaa少妇高潮大片免费看| 中国女人内谢69xxxx视频| 麻豆91精品91久久久的内涵| 国产经典三级| 亚洲熟妇久久国产精品| 国产精品国产三级国产试看| 国产真人无码作爱免费视频| 关之琳三级做爰| 亚洲精品久久久久久下一站| 色中文网| a男人的天堂久久a毛片| 波多野结衣一区二区三区高清| 久久伊人免费| 久久riav| 午夜黄视频| 久久精品视频99| 免费av中文字幕| 国产自产在线视频一区| 456欧美成人免费视频| 少妇被猛烈进入到喷白浆| 亚洲国产精品激情在线观看| 天天撸日日夜夜| 国产日韩综合av在线观看一区| 欧美老女人性生活视频| 中文理论片| 久久久国产99久久国产久麻豆| 日本xxxx18野外无毒不卡| 精品国产污污免费网站入口| 无码视频一区二区三区在线观看| 黄色片网址在线观看| 久久日本片精品aaaaa国产| 四虎网站| 国产亚洲精久久久久久无码苍井空| 亚洲中文波霸中文字幕| 欧美日激情| 日韩人妻无码精品久久| 国产丝袜av| 成人国产精品久久久网站| 国产一级片久久| 欧美少妇b| 色综合中文字幕| 国内少妇毛片视频| 天天看国91产在线精品福利桃色| 红桃成人少妇网站| 国产良家自拍| 日本三级黄色录像| 久久精品久久久| 日韩三级一区二区| 国产又爽又黄又刺激的视频| 国产在线激情| 午夜激情看片| 波多野结衣一区二区三区四区| 日本做爰高潮视频| 日韩免费在线观看| 99精品久久久中文字幕| 国模冰冰炮一区二区| 国产成人无码短视频| 国内精品久久久久影院日本资源| 夜夜嗷| 亚洲成色777777女色窝| 国产免费久久精品99久久| 国产精品18久久久| 日韩视频在线观看一区二区三区| 91成人在线免费视频| 一级做a爰片久久毛片一| 91官网在线| 色哟哟在线观看视频| 91亚洲国产成人精品一区二区三| 久久免费视频观看| 久久久噜噜噜久久久精品| 亚洲成人伊人| 四虎亚洲精品成人a在线观看| 一区二区小说| 91最新地址永久入口| 精品亚洲成a人片在线观看少妇| 亚洲日韩a∨无码久| 无码r级限制片在线观看| 国产吃瓜在线| 久久久久久精品色费色费s| 日韩最新中文字幕| 丰满少妇乱子伦精品看片| 国产精品嫩草影院入口日本一区二| 国产精品国产三级国产普通话99 | 精品国产美女福到在线不卡| 欧美性受xxx黑人xyx性爽| 欧美三级在线视频| 欧美孕妇变态孕交粗暴| www视频在线观看网站| 午夜性影院爽爽爽爽爽爽| 日本视频网站在线观看| 亚洲视频手机在线观看| 波多野结衣一二区| 欧美日韩国产成人在线观看| 另类αv欧美另类aⅴ|