- 勾股定理反思 推薦度:
- 相關推薦
勾股定理反思【推薦】
在現實社會中,教學是重要的任務之一,反思過去,是為了以后。那么優秀的反思是什么樣的呢?下面是小編精心整理的勾股定理反思,歡迎大家借鑒與參考,希望對大家有所幫助。

勾股定理反思1
今后的教學中:
(1)立足教材,鉆研教學大綱的要求;試卷中較多題目是根據課本的題目改編而來,從學生的考試情況來看課本的題目掌握不理想,這說明在平時的教學中對書本的`重視不夠,過多地追求課外題目的訓練,但忽略學生實實在在地理解課本知識,提高思維能力。課堂上盡量把課堂還給學生,讓學生積極參與到課堂中,多機會給學生展示,表演,講題,把思路和方法講出來,使學生更清淅地理解題目,提升自己對數學的理解。多點讓學生獨立思考,發現問題,解決問題。
(2)注重培養學生良好的學習習慣。
(3)加強例題示范教學,培養學生解題書寫表達。
(4)多一些數學方法、數學思想的滲透,少一些知識的生搬硬套。
(5)在數學教學過程中,課堂上系統地對數學知識進行整理、歸納、溝通知識間的內在聯系,形成縱向、橫向知識鏈,從知識的聯系和整體上把握基礎知識。
(6)針對學生的兩極分化,加強課外作業布置的針對性。讓每個學生課外有適合的作業做,對不同層次的學生布置不同難度的作業,提高課外學習的效率,減輕學生課外作業的負擔。正確看待學生學習數學的差異,克服兩極分化。數學課堂上多考慮、關照中下生,讓他們在數學課堂上聽得進,肯用手。
(7)教師在平時的課堂教學中必須致力于改變教師的教學行為和學生的學習方式,加強學法指導,提高學生的閱讀能力,平時培養學生的自學能力,使學生實實在在地理解課本知識,提高思維能力。平時要關注課本、關注運算能力、關注教學中的薄弱環節。
勾股定理反思2
勾股定理的探索和證明蘊含著豐富的數學思想和數學方法,是培養學生良好思維品質的最佳載體。它以簡潔優美的圖形結構,豐富深刻的內涵刻畫了自然界的和諧統一的關系,是數形結合的完美典范。著名數學家華羅庚就曾提出把“數形關系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進行第一次“談話”的語言。為讓學生通過對這節課的學習得到更好的歷練,在教學時,特別注重從以下幾個方面入手:
一、注重知識的自然生發。
傳統的教學中,教師往往喜歡壓縮理論傳授過程,用充足的時間做練習,以題代講,搞題海戰術。但從學生的發展來著,如果壓縮數學知識的形成過程,不講究知識的自然生發,學生獲取知識的過程是被動的,形成的體系也是孤立的,長此以往,學生必將錯過或失去思維發展和能力提高的機遇。在這節課上,不刻意追求所謂的.進度,更沒有直接給出勾股定理,而是組織學生開展畫一畫、看一看、想一想、猜一猜、拼一拼的活動,學生在活動思考、交流、展示中,逐漸的形成了對知識的自我認識和自我感悟。這樣做不僅能幫助學生牢固掌握勾股定理,更重要的是使學生體會用自己所學的舊知識而獲取新知識過程,使他們獲得成功的喜悅,增強了學生主動性,同時他們的思維能力在知識自然形成的過程中不斷發展。
二、注重數學課上的操作性學習
操作性學習是自主探究性學習有效途徑之一,學生通過在實踐活動中的感受和體驗,有利于幫助學生理解和掌握抽象的數學知識。在這節課上,首先讓學生動手畫直角三角形,得出研究題材,然后又讓學生利用四個直角三角形拼一拼,驗證猜想。這樣充分的調動了學生的手、口、腦等多種感官參與數學學習活動,既享受了操作的樂趣,又培養了學生的動手能力,加深了對知識的理解。
三、注重問題設計的開放性
課堂教學是教師組織、引導、參與和學生自主、合作、探究學習的雙邊活動。這其中教師的“引導”起著關鍵作用。這里的“引導”,很大程度上靠設疑提問來實現。在教學實踐中,問題設計要具有開放性。因為開放性問題更有利于培養學生的創造性思維、體現學生的主體意識和個性差異。本節課在設計涂鴉直角三角形時,安排學生在方格紙上任意涂鴉一個直角三角形;在設計拼圖驗證環節時,安排學生任意拼出一個正方形或直角梯形,有意沒指定畫一個具體邊長的直角三角形和正方形,就是不想對學生的思維給出太多的限制條件,給出更多的想象和創造空間。雖然探究的時間會更長,但這更符合實際知識的產生環境,學生只有在這樣的環境下進行創造、發現和磨練,能力素養才會得到更有效的歷練。
四、注重讓學生經歷完整的數學知識的發現過程。
新《數學課程標準》在關于課程目標的闡述中,首次大量使用了"經歷(感受)、體驗(體會)、探索"等刻畫數學活動水平的過程性目標動詞,就是要求在數學學習的過程中,讓學生經歷知識與技能形成與鞏固過程,經歷數學思維的發展過程,經歷應用數學能力解決問題的過程,從而形成積極的數學情感與態度。教學從學生感興趣的涂鴉開始,再經歷觀察、分析、猜想、驗證的全過程,讓學生充分的經歷了完整的數學知識的發現過程,使學生獲得對數學理解的同時,在知識技能、思維能力以及情感態度等多方面都得到了進步和發展。
如果有機會再上這節課,我想我會投入更多的精力對學生可能會給出的答案進行預想,以便在課堂上給予學生更多的啟迪,讓他們走的更遠。一堂課,雖已結束,但對于生命課堂的領悟這條路,還有很長的路要走,我將繼續上下求索,做學生更好的支點。
勾股定理反思3
勾股定理是中學數學幾個重要定理之一,它揭示了直角三角形三邊之間的數量關系,既是直角三角形性質的拓展,也是后續學習“解直角三角形”的基礎。它緊密聯系了數學中兩個最基本的量——數與形,能夠把形的特征(三角形中一個角是直角)轉化成數量關系(三邊之間滿足a2+b2=c2)堪稱數形結合的典范,在理論上占有重要地位。
八年級學生已具備一定的分析與歸納能力,初步掌握了探索圖形性質的基本方法。但是學生對用割補方法和面積計算證明幾何命題的意識和能力存在障礙,對于如何將圖形與數有機的結合起來還很陌生。
基于以上原因,本節課把學生的探索活動放在首位,一方面要求學生在教師引導下自主探索,合作交流,另一方面要求學生對探究過程中用到的數學思想方法有一定的領悟和認識。從而教給學生探求知識的方法,教會學生獲取知識的本領。并確立了如下的教學目標:
1、學生經歷從數到形再由形到數的轉化過程,經歷探求三個正方形面積間的關系轉化為三邊數量關系的過程。并從過程中讓學生體會數形結合思想,發展將未知轉化為已知,由特殊推測一般的合情推理能力。
2、讓學生經歷圖形分割實驗、計算面積的過程,嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題,積累解決問題的經驗,在過程中養成獨立思考、合作交流的學習習慣;通過解決問題增強自信心,激發學習數學的興趣。
3、通過老師的介紹,體會一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內涵,激發生的熱愛祖國悠久文化的思想感情,培養他們的民族自豪感。
教學難點將邊不在格線上的圖形轉化為邊在格線上的圖形,以便于計算圖形面積。
本節課根據學生的認知結構采用“觀察——猜想——歸納——驗證——應用”的教學方法,這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想。另外,我在探索的過程中補充了一個倒水實驗,(放片子)我個人覺得效果很好,它讓學生深刻的'體會到了,不是所有三角形三邊都有a2+b2=c2的關系,只有直角三角形三邊才存在這種關系,并且實驗很具有直觀性,便于學生理解,而且是在學生的學習疲勞期出現,達到了再次點燃學生學習熱情的目的,一舉多得。
除了探究出勾股定理的內容以外,本節課還適時地向學生展現勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發學生愛國熱情,培養學生的民族自豪感和探索創新的精神。練習反饋中既有勾股定理的基本應用,還有貼近學生生活的實例,既讓學生感受到學習知識應用于生活的成就感,又使學生深刻了解勾股定理的廣泛應用。讓學生總結本堂課的收獲,從內容,到數學思想方法,到獲取知識的途徑等方面。給學生自由的空間,鼓勵學生多說。這樣引導學生從多角度對本節課歸納總結,感悟點滴,使學生將知識系統化,提高學生素質,鍛煉學生的綜合及表達能力。作業為了達到提高鞏固的目的,期望學生能主動地探求對勾股定理更深入的認識、拓展學生的視野。
勾股定理反思4
這次展示課,我上的是八年級數學課《勾股定理的逆定理》,我是根據“五步三查”課堂模式來設計“導學案”和組織教學的。這次課相對于過去基礎上的課堂是完全不同的課,其進步之處之一舒范了課堂的結構,明確了課堂模式“五步三查”,操作上更能心中有數。進步之二是發揮學生的積極性方式與手段更多些,“老師需要什么?就評價什么”,進行了有益的嘗試,將評價納入整個課堂,如何通過開展小組的評比與競賽調動學生積極性及學習氛圍積累了經驗。進步之三是“導學案”的編寫上更適和學生,更有利于對課堂的指導。進步之四是課堂效率和課堂效果更好。進步之五學生的主體作用得到了真正的體現。進步之六是課堂不僅成了學習知識的地方,更是增進情感、培養能力的地方。
這次展示課也有待改進的地方,其一是“五步三查”模式操作細節不清楚,對整個操作流程理解不到位,導致整個課堂有些亂,因不能多講,又不放心學生學。其二是學生的能力培養還應下大功夫,過去是以老師講為主,學生只是聽記,現在要他們自學、討論,同學們還不習慣,導致課堂有些沉悶。其三是時間緊,教學任務完不成,課堂的知識掌握度、能力目標達成度較低。其四是“五步三查”各細節的科學性、有效性落實,有許多細節的.落實與協調有待深化,如如何評價?如何有效利用評價得分?如何有效學?其五是“導學案”如何更科學編制?體現分層同時又能更有利于指導學生的學,也有利于指導教師的教。其六更主要的是老師的觀念,樹立學生為主體的觀念,將學生發展落實到教育教學各環節這才是根本。勇于變革和創新,積極研究和實踐才能保障我們的課堂更順利推進。雖然存在這樣多,或更多的問題,但對其前景我們每一個人都充滿了信心,我們相信只有這樣做才能真正達到教育的目標。
勾股定理反思5
本節課是公式課,探索勾股定理和利用數形結合的方法驗證勾股定理。勾股定理是在學生已經掌握了直角三角形的有關性質的基礎上進行學習的,它揭示了一個三角形三條邊之間的數量關系,它是解直角三角形的主要根據之一,是直角三角形的一條非常重要的性質,也是幾何中最重要的定理之一,它將形與數密切聯系起來,在數學的發展中起著重要的作用,在現實世界中也有著廣泛的作用.由此可見,勾股定理是對直角三角形進一步的認識和理解,是后續學習的基礎。因此,本節內容在整個知識體系中起著重要的作用。
針對八年級學生的知識結構和心理特征,本節課的設計思路是引導學生‘做’數學”,選用“引導探究式”教學方法,先由淺入深,由特殊到一般地提出問題,接著引導學生通過實驗操作,歸納驗證,在學生的自主探究與合作交流中解決問題,這樣既遵循了學生的認知規律,又充分體現了“學生是數學學習的主人、教師是數學學習的組織者、引導者與合作者”的教學理念.通過教師引導,學生動手、動腦,主動探索獲取新知,進一步理解并運用歸納猜想,由特殊到一般,數形結合等數學思想方法解決問題。同時讓學生感悟到:學習任何知識的最好方法就是自己去探究。
本節課采用的教學流程是:創設情境→激發興趣→提出問題→故事場景→發現新知→深入探究→網絡信息→規律猜想→數字驗證→拼圖效果→實踐應用→拓展提高→回顧小結→整體感知等環節共六個活動來完成教學任務的。在這一過程中,讓學生經歷了知識的發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想,從而更好地理解勾股定理,應用勾股定理,發展學生應用數學的意識與能力,增強了學生學好數學的愿望和信心。
本節課中的學生對用地磚鋪成的地面的觀察發現,計算建立在直角三角形斜邊上的正方形面積,對直角三角形三邊關系的發現,自我小結等,都給學生提供了充分的表達和交流的機會,發展了語言表達和概括能力,增強了合作意識。由展示生活圖片,感受生活中直角三角形的應用,引導學生將生活圖形數學化。感受到生活中處處有數學。由實際問題:工人師傅要做出一個直角三角形支架,一般會怎么做?引導學生思考:直角三角形的三邊除了我們已知的不等關系以外,是不是還存在著我們未知的等量關系呢?調動學生的學習熱情,激發學生的'學習愿望和參與動機。由學生觀察地磚鋪成的地面,分別以圖中的直角三角形三邊為邊向外作正方形,求出這三個正方形的面積,尤其計算建立在直角三角形斜邊上的正方形面積。
這樣學生通過正方形面積之間的關系主動建立了由形到數,由數到形的聯想,同時也初步感受到對于直角三角形而言,三邊滿足兩直角邊的平方和等于斜邊的平方。這樣的設計有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。
得出結論后,還要引導學生用符號語言表示勾股定理,如符號語言:Rt△ABC中,∠C=90,AC2+BC2=AB2(或a2+b2=c2),因為將文字語言轉化為數學語言是數學學習的一項基本能力。其次,介紹“勾,股,弦”的含義,進行點題,并指出勾股定理只適用于直角三角形;最后介紹古今中外對勾股定理的研究,這樣可讓學生更好地體會勾股定理的豐富內涵與文化背景,陶冶情操,豐富自我,從中得到深層次的發展。
勾股定理反思6
我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數學家商高就提出,將一根直尺折成一個直角,如果勾(短直角邊)等于三,股(長直角邊)等于四,那么弦等于五。即“勾三、股四、弦五”。它被記載于我國古代著名的數學著作《周髀算經》中,在這本書的另一處,還記載了勾股定理的一般形式。中國古代的幾何學家研究幾何是為了實用,是唯用是尚的。在講完《勾股定理逆定理》這節課后,我的反思如下:
本節課的教學目標是:在掌握了勾股定理的基礎上,讓學生如何從三邊的關系來判定一個三角形是否為直角三角形.即:勾股定理的逆定理。
勾股定理的逆定理的教學設計說明:本教教學設計是圍繞勾股定理的逆定理的證明與應用來展開,結合新課標的要求,根據我班學生的認知結構與教材地位為了達到本節課的教學目標,我做了以下設計(也是成功之處):
一、創設情境,提出猜想達到直觀性的教學要求。讓幾個學生要全班同學前面做一個“數學實驗”,三條分別為:3,4,5的三角形是一個直角三角形。第二步驟是讓學生畫已知三邊的一定長度的三角形,判斷是不是直角三角形,并分析三邊滿足什么關系條件,同時,引導學生從特殊到一般提出猜想。
二、將教學內容精簡化.考慮到我所教班級的學生認識水平,做了如下教學設計:⑴將教學目標定為讓學生掌握勾股定理的逆定理.以及逆定理的應用,而對于本課中逆定理的證明.以及其探究都放在一下節課再進行講解.⑵對于本課中所出現了的逆定理的定義,及其真假性的判斷也簡單化.本節課也不詳細講.本節課的的重點放在掌握勾股定理的逆定理,及其應用.從課堂效果來看,這樣的教學設計是合理的,學生較好的掌握了勾股定理的'逆定理,所以取得了良好的課堂效果。
三、應用訓練,鞏固新知為了鞏固新知,靈活運用所學知識解決相應問題,提高學生的分析解題能力,基于對我班的學情分析,為了讓學生都能動起手做,學案的設計上做了很多腳手架,目的就是讓學生能夠按照腳手架的步驟一步步完成,最終也形成了解題的“操作性”。此外,腳手架的設置對我們的中下水平的學生是很多幫助的.從課堂上看,他們也能在腳手架的幫助下,完成一定的題目中,而如果沒有的話,這部分學生對一些基本的題都會束手無策.
四、實行分層教學,讓不同水平的學生在同一課堂都能學好,為此,我設計了三個層次的問題,以達到分層教學目標:第一層次是讓學生直接運用定理判斷三角形是否是直角三角形,掌握定理基本運用;第二層次是強調已知三角形三邊長或三邊關系,就有意識的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應用,又為下一個層次做好了鋪墊;第三層次是靈活運用勾股定理與逆定理解決圖形面積的計算問題.根據學生原有的認知結構,讓學生更好地體會分割的思想.設計的題型前后呼應,使知識有序推進,有助于學生的理解和掌握;讓學生通過合作、交流、反思、感悟的過程,激發學生探究新知的興趣,感受探索、合作的樂趣,并從中獲得成功的體驗.真正體現學生是學習的主人.。將目標分層后,我設計的學案里的題目也是相應的進行了分層設計,滿足不同層次的學生的做題要求,達到鞏固課堂知識的目的。最后,布置作業,也是分層布置的,分為三層,對應不同的學生,讓他們的作業都在他們的能力范圍。
誠然,這節課也存在許多不足第一、新課導入部分:存在如下值得改進的地方:①復習舊知部分,復習勾股定理的內容應用了填空的形式,這個形式不是最佳的.因為學生書寫勾股定理耗時,既使書寫出來,復習效果也不太好。最佳的應該是以簡單的題目形式來復習勾股定理.這樣快而有效;②如何從復習勾股定理中巧妙的切入本課的主題,過渡語的設置,應該將過渡語言簡單明了,可設計成:怎么從邊的關系來判斷一個三角形是直角三角形呢?這就是本節課要學習的內容.③導入部分的課時分配估計不足,顯得冗長,也一定程度上造成后面的教學時間緊張。應該對導入部分的時效再進行分析簡化。
第二存在的問題是:
(1)腳手架設計的太多,本節課有一定的腳手架是合適的,太多了,反而不利于學生自己的書寫規范性,過程的掌握等,
(2)練習題題量過大,本節課的練習題大部分都是重復一些基本的操作,沒有必要太多簡單的題目,可以適當去掉.對于數字的設計可以更加科學化一點,應該讓學生方便運算和節省時間.此外,對于層次較要的同學來說,應該設計更多一點綜合性的題目。適當的增加一些提高題,以滿足這一層次的學生的學習練習要求.
在備每一節課中,對于課堂的每一個細節,第一刻鐘,第一個教學設計的思考都無不直接影響著你的這一節課,影響著你的課堂效果。靜心思考,反思整個過程是一種全新的收獲,也是全新的開始,讓自己能夠重新起步,向前。
勾股定理反思7
通過復習讓學生充分回憶前面學習的有關三角形的內容,使學生加深對知識的理解,從而為本節課的學習打下良好的基礎。同時,學生回憶的過程也是一個思考的過程,特別是面積法來驗證勾股定理,是本章教學的難點,對此學生應該先形成一個印象、概念,然后才能學習掌握好。
已知直角三角形中的兩條直角邊求斜邊,這是上節課學習的內容。在上節課學習過程中,學生已經練習過。但為什么本節課中仍然有部分學生出錯呢?究其原因,是因為上節課學習的內容太多,方法也較多、較靈活,因而學生對每一個內容與方法都仍是一種感性的認識,而仍沒達到理解掌握的程度。因此,當讓學生自己獨立完成問題時,往往就產生了思維上存在的缺點,從而出現各種錯誤。另一方面,教學中我們往往會采用一種“一問齊答”的問答形式,這樣會容易掩蓋學生的真實想法。其實,在解答此問題時,教師很容易就走進了這樣的問答方式,原因在于我們認為這樣的問題太簡單了,上節課學生也似學會了,于是便產生了一種忽視的教學。可現實卻往往不是這樣的,我們認為簡單的知識對于學生(特別是基礎較弱的學生)來說,往往是不簡單的。因此,教學中應盡量少用“一問齊答”的`欺騙教師的問答方式,讓學生充分發表自己的意見,同時引導學生分析錯誤,養成反思的意識,只有這樣,才能真正使學生學有所獲。
同一個問題的不同變式,可以讓學生自我檢查對知識與方法是否能真正達到理解、掌握與運用,從而提高學生學習的自信心。解答這個問題的方法其實就是驗證勾股定理所用到的方法——面積法。在課堂教學之初始讓學生回憶上一堂課的方法,有了一個初步的印象,在這里再提出來時學生就不會感到突然和陌生,達到承上啟下的作用。另一方面,教師在講解問題的解答時,并不是把問題的解答方法與過程全部一下子出來,而是引導學生經過一步步的思考,讓學生自己在思考與感悟中得到問題的解答,這樣可以培養學生思考問題的方法,提高學生的思維能力。如果此時能對已經解答出來的同學大力表揚,并讓學生引導學生來解答余下的問題,那么效果會更好。
數學問題生活化,用數學知識解決生活中的實際問題,是課程改革后數學課堂教學必須實施的內容。在解答實際生活中的問題時,關鍵在于把生活問題轉化為數學問題,讓生活問題數學化,然后才能得以解決。在這個過程中,很多時候需要教師幫助學生去理解、轉化,而更多時候需要的是學生自己探索、嘗試,并在失敗中尋找成功的途徑。本題教學中,如果能讓學生自己反思答案與方法的合理性,那么效果會更好了。課前預設與課堂生成,
這是課程改革以來出現的最多問題之一。課堂教學任務要完成,而課堂又要還給學生,充分發揮學生的自主性,那么如何處理好這個問題呢?在本課最后的這個環節里,如果能引導學生歸納本課學生的方法,特別是面積法,然后再給一個簡單的問題來鞏固,那么效果肯定會比這樣匆匆結束課堂要好。但是,這部分知識內容又什么時候來解決呢?不解決行不行呢?這是課后困擾我的問題。“課堂教學應基于自身班級學生的具體情況,不論是課前預設(備課)還是課堂教學過程,都應以使絕大部分學生能真正學習掌握好為基礎。”經過本節課的教學后,我自己對有效的課堂產生了一個這樣的認識。在以“知識為中心”還是以“學生學習為中心”的這個問題上,我想應以學生為中心,同時兼顧教學內容的完成,如果發生矛盾時,那么我想是不是仍應以學生為中心呢?這樣教學任務完成不了怎么辦呢?影響教學進度又怎么辦呢?考試又怎么辦呢?……。其實,歸根到底是:考試了怎么辦呢?課程改革已走到了第七個年頭,考試始終是一根有形無形的指揮棒在影響著我們每堂課的教學,在影響著我們的教學觀念與教學方法,甚至于影響我們的教學理想。其實我們都很清楚,這樣匆匆的進行課堂教學,雖然表面上看是完成了教學內容,但實際上學生并沒有掌握好,考試時真的出現時學生仍是無法解答,那么,這樣的教學豈不是也是無效的嗎?無效的教學是不是在浪費學生的精力與時間呢?這樣是不是有點自欺欺人了呢?想到這,我越感不安了
因此,如果有機會再上這節課,就算前面能提高一點效率,節省一點時間,我也會省去后面的那部分內容,增加一些有趣味的生活問題,總結與反思本課的方法,從而使學生對本課學習掌握得更好,對自身的數學學習更有自信。
勾股定理反思8
《勾股定理》一章檢測結果出來了,學生考績很不理想,很多不該錯的題做錯了。是什么原因致使錯誤頻出呢?我輾轉反側。
一是沒有把握好勾股定理的適用范圍。勾股定理只適用直角三角形,而不適用鈍角三角形和銳角三角形。例如:在△ABC中,AC=3,BC=4,有的同學直接根據勾股定理得:AB=5。這是因為與勾股定理的條件相似,已知三角形的兩邊,求第三邊,滿足能利用勾股定理解決問題的特征之一,卻忽略特征之二:勾股定理只適用直角三角形。
二是沒有弄清楚待求的直角三角形的第三邊是斜邊還是直角邊。例如:已知直角三角形兩直角邊的長分別是4c和5c,求第三邊的長。很多同學可能是受勾股數“3,4,5”的影響,錯把結果寫成了3c,其實這里的第三邊是斜邊.
三是缺乏分類思想,考慮問題不全面,導致解答錯誤。例如:已知直角三角形兩邊長分別是1、4,求第三邊的長。這里的第三邊有可能是斜邊也有可能是直角邊,所以結果應該有兩個,但好多同學都填了一個答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面積。此題應考慮三角形是銳角三角形,還是鈍角三角形兩種情況,否則會漏解。
四是利用直角三角形的判別條件時,沒有分清較短邊和較長邊。例如:已知三角形的三邊長分別為a=0.6,b=1,c=0.8,問這個三角形是直角三角形嗎?有的同學認為此三角形不是直角三角形,其實這個三角形是以b為斜邊的直角三角形。
五是缺少方程思想和轉化思想,使綜合類試題痛失分數。
六是書寫不規范。例如:運用直角三角形的判別條件,判別一個三角形是否為直角三角形的過程中,有的.同學寫出一句“由勾股定理得”的不恰當的敘述。
針對上述問題,痛定思痛,感悟頗多:
第一,教學不可削弱技能的訓練。要學生真正掌握某個知識,如果缺少相應技能的訓練是不科學的。正如教人開車的教練把開車的要點、技巧講清楚,然后叫學車的學生馬上開車去考試一樣。試問:當教師在講臺上滔滔不絕地講解時,能否保證每一個學生都專心去聽?能否保證每一個專心去聽的學生都聽得明白?能否保證每一個聽得明白的學生都能解同一類題目?可見:“課堂上教師講,學生聽,聽就會懂,懂就會做。”只是教師一廂情愿的做法,教師只有不滿足于自己的“講清楚”,在課堂上幫助學生獨立完成,并進行一定量的訓練,才能實現教學的有效性。
第二,巧設錯誤案例,讓學生辨錯、糾錯,即學生對教師的有意“示錯”進行分析、判斷,提高防錯能力。在教學中,教師有時可恰到好處,有意地把估計學生易錯的做法顯示給學生,以引起學生的注意,然后通過師生共同分析錯因,加以糾錯,達到及時、有效預防,并避免學生出現類似錯誤的目的。這樣,可防患于未然,并提高學生分析、判斷、解決問題的能力。
第三,教學應注重數學思想和方法傳授。理解掌握各種數學思想和方法是形成數學技能技巧,提高數學能力的前提。 學生學習數學,學會是基礎,會學是目的,教是為了不教。教學中,在加強技能訓練的同時,要強化數學思想和數學方法的教學,做到講方法聯系思想,以思想指導方法,使二者相互交融,相得益彰。此外,在教學中培養學生的“問題意識”,激勵學生善于發現問題、思考問題,并能運用數學方法去解決廣泛的多種多樣的實際問題,以便增強學生探究新知識、新方法的創造能力。
第四,教學應加大綜合訓練的力度。目前的綜合題已經由單純的知識疊加型轉化為知識、方法和能力綜合型尤其是創新能力型試題,具有知識容量大、解題方法多、能力要求高、突顯數學思想方法的運用以及創新意識等特點。教學時應抓好“三轉”能力的培養:(1)語言轉換能力。每道數學綜合題都是由一些特定的文字語言、符號語言、圖形語言所組成,解綜合題往往需要較強的語言轉換能力,能把普通語言轉換成數學語言。(2)概念轉換能力:綜合題的轉譯常常需要較強的數學概念的轉換能力。(3)數形轉換能力。解題中的數形結合,就是對題目的條件和結論既分析其代數含義又分析其幾何意義,力圖在代數與幾何的結合上找出解題思路。只有如此,方可找到解決綜合題的突破口。
第五,教學勿忘發揮板書的特有功能。板書通過學生的視角器官傳遞信息,比語言富有直觀性。條例清晰,層次分明,邏輯嚴謹的解答過程的板演,不但便于學生理解、掌握知識,還會給學生起到示范作用。
相信通過反思教學,優化方法,細化過程,一定能取得事半功倍之效。
勾股定理反思9
勾股定理是中學數學幾個重要定理之一,它揭示了直角三角形三邊之間的數量關系,既是直角三角形性質的拓展,也是后續學習“解直角三角形”的基礎.它緊密聯系了數學中兩個最基本的量——數與形,能夠把形的特征(三角形中一個角是直角)轉化成數量關系(三邊之間滿足a2+b2=c2)堪稱數形結合的典范,在理論上占有重要地位.
八年級學生已具備一定的分析與歸納能力,初步掌握了探索圖形性質的基本方法.但是學生對用割補方法和面積計算證明幾何命題的意識和能力存在障礙,對于如何將圖形與數有機的結合起來還很陌生.
基于以上原因,本節課把學生的探索活動放在首位,一方面要求學生在教師引導下自主探索,合作交流,另一方面要求學生對探究過程中用到的數學思想方法有一定的領悟和認識.從而教給學生探求知識的方法,教會學生獲取知識的本領.并確立了如下的教學目標:
1、學生經歷從數到形再由形到數的轉化過程,經歷探求三個正方形面積間的關系轉化為三邊數量關系的過程。并從過程中讓學生體會數形結合思想,發展將未知轉化為已知,由特殊推測一般的合情推理能力。
2、讓學生經歷圖形分割實驗、計算面積的過程,嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題,積累解決問題的經驗,在過程中養成獨立思考、合作交流的學習習慣;通過解決問題增強自信心,激發學習數學的興趣。
3、通過老師的介紹,體會一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內涵,激發生的熱愛祖國悠久文化的思想感情,培養他們的民族自豪感。
教學難點將邊不在格線上的圖形轉化為邊在格線上的.圖形,以便于計算圖形面積.
本節課根據學生的認知結構采用“觀察--猜想--歸納--驗證--應用”的教學方法,這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想.另外,我在探索的過程中補充了一個倒水實驗,(放片子)我個人覺得效果很好,它讓學生深刻的體會到了,不是所有三角形三邊都有a2+b2=c2的關系,只有直角三角形三邊才存在這種關系,并且實驗很具有直觀性,便于學生理解,而且是在學生的學習疲勞期出現,達到了再次點燃學生學習熱情的目的,一舉多得。
除了探究出勾股定理的內容以外,本節課還適時地向學生展現勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發學生愛國熱情,培養學生的民族自豪感和探索創新的精神.練習反饋中既有勾股定理的基本應用,還有貼近學生生活的實例,既讓學生感受到學習知識應用于生活的成就感,又使學生深刻了解勾股定理的廣泛應用.讓學生總結本堂課的收獲,從內容,到數學思想方法,到獲取知識的途徑等方面.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節課歸納總結,感悟點滴,使學生將知識系統化,提高學生素質,鍛煉學生的綜合及表達能力.作業為了達到提高鞏固的目的,期望學生能主動地探求對勾股定理更深入的認識、拓展學生的視野.
勾股定理反思10
勾股定理的探索和證明蘊含豐富的數學思想和研究方法,是培養學生思維品質的載體。它對數學發展具有重要作用。勾股定理是一壇陳年佳釀,品之芬芳,余味無窮,以簡潔優美的形式,豐富深刻的內涵刻畫了自然界和諧統一關系,是數形結合的優美典范。
教學中我以教師為主導,以學生為主體,以知識為載體,以培養能力為重點。為學生創設“做數學、玩數學”的教學情境,讓學生從“學會”到“會學”,從“會學”到“樂學”。
1、查資料
我讓學生課前查閱有關勾股定理資料,學生對勾股定理歷史背景有初步了解,學生充滿自信迎接新知識《勾股定理》學習的挑戰。
學生查得資料:世界許多科學家尋找“外星人”。1820年,德國數學家高斯提出,在西伯利亞森林伐出直角三角形空地,在空地種上麥子,以三角形三邊為邊種上三片正方形松樹林,如果有外星人路過地球附近,看到這個巨大數學圖形,便知道:這個星球上有智慧生命。我國數學家華羅庚提出:要溝通兩個不同星球的信息交往,最好利用太空飛船帶上這個圖形,并發射到太空中去。
2、講故事
畢達哥拉斯是古希臘數學家。相傳2500年前,畢達哥拉斯在朋友家做客,發現朋友家用地磚鋪成地面反映了直角三角形三邊的數量關系。
我講畢達哥拉斯故事,提出問題。學生獨立思考,提出猜想。我配合演示,使問題形象、具體。教學活動從“數小方格”開始,起點低、趣味性濃。學生在偉人故事中進行數學問題的討論和探索。平淡無奇現象中隱藏深刻道理。
3、提問題
“問題是思維的起點”,一段生動有趣的.動畫,點燃學生求知欲,以景激情,以情激思,引領學生進入學習情境,學生帶著問題進課堂。
例如:一架長為10m的梯子AB斜靠在墻上,若梯子的頂端距地面的垂直距離為8m。如果梯子的頂端下滑2m ,那么它的底端是否也滑動2m ?
盡管學生講的不完全正確,但培養了學生運用數學語言進行抽象、概括的能力,學生經歷了應用勾股定理解決問題的思考過程,學生增長了知識,學生增長了智慧。
例如:《九章算術》記載有趣問題:有一個水池,水面是邊長為10尺的正方形,在水池的中央有一根新生蘆葦,它高出水面1尺,若把這根蘆葦拉向岸邊,它的頂端恰好到達岸邊的水面,問這個水池深度和這根蘆葦長度各是多少?
我通過“著名問題”探究,讓學生了解勾股定理的古老與神奇。問題本身具有極大挑戰性,激發了學生強烈求知欲,激發了學生探究知識的愿望。學生討論交流,發現用代數觀點證明幾何問題的思路。我配以演示,分散了難點,培養了學生發散思維、探究數學問題的能力。
4、講證法
我拋磚引玉介紹趙爽弦圖,趙爽用幾何圖形截、割、拼、補證明代數恒等關系,具有嚴密性,直觀性,是中國古代以形證數、形數統一的典范。趙爽指出:四個全等直角三角形拼成一個中空的正方形,大正方形面積等于小正方形面積與4個三角形面積和。 “趙爽弦圖”表現了我國古代人對數學的鉆研精神和聰明才智,它是我國數學的驕傲。這個圖案被選為20xx年北京召開的國際數學家大會會徽。
隨后展示了美國總統證法。1876年4月1日,美國伽菲爾德在《新英格蘭教育日志》發表勾股定理的證法。1881年,伽菲爾德就任美國總統,為了紀念他直觀、簡捷、易懂、明了的證明,這一證法被稱為“總統”證法。
我感覺學生是小小發明家。學生在建構知識的同時,欣賞作品享受成功的喜悅。
5、巧設計
練習設計我立足鞏固,著眼發展,兼顧差異,滿足學生渴望發展要求。練習有基礎訓練,變式訓練,中考試題,引出勾股樹,學生驚嘆奇妙的數學美。課內知識向課外知識延伸,打開了學生思路,給學生提供了廣闊空間。數學教學變得生機勃勃,學生喜歡數學,熱愛數學。
我讓學生講解搜集資料,豐富了學生背景知識,體現了自主學習方式。我對學生進行愛國主義教育,激發了學生民族自豪感和奮發向上學習精神。我讓學生欣賞豐富多彩的數學文化,展示五彩斑斕的文化背景,激發了學生的愛國熱情。
6、善總結
課堂小結是對教學內容的回顧,是對數學思想、方法的總結。我強調重點內容,注重知識體系的形成,培養了學生反思習慣。
我還想對同學們說:
牛頓——從蘋果落地最終確立了萬有引力定律
我們——從朝夕相處的三角板發現了勾股定理
雖然兩者尚不可同日而語
但探索和發現——終有價值
也許就在身邊
也許就在眼前
還隱藏著無窮的“萬有引力定律”和“勾股定理”……
祝愿同學們——
修得一個用數學思維思考世界的頭腦
練就一雙用數學視角觀察世界的眼睛
開啟新的探索——
發現平凡中的不平凡之謎……
勾股定理反思11
數學學習中工作量最大的部分就是解數學習題,這也是講所學基礎知識轉化為基本技能的必經之路,沒有大量習題的跟進是不可能很好的形成基本解題技能的。習題課就是通過各種相關習題的練習,期望能夠鞏固和深化對所學基礎知識的理解和認識,將這些基礎知識盡快的轉化為基本技能。
今天是第十七章《勾股定理》的一節全章小結部分的習題課,在學生講解習題的時候,講的最不好的地方就是這個或這類習題的解題思路和解題的方法,還有就是解題的基本入手點。也就是說很多的孩子,他們在做課后習題的時候,沒有在分析、思考各類習題的解題思路或方法或入手點方面投入更多的精力,這一點也是我們的學生學習一直不能有大幅度提高的主要問題,也是制約他們有效學習的基本因素。
新的課程理念把教師的角色定義為“教師是學生學習的組織者、引導者和合作者”,教師的主要作用是組織、引導、參與學生的`課堂學習活動。而教師在學生的學習活動中更多的是一種指導的作用,而教師的指導更多的應該側重于方法、思想的指導。教師必須介入的就是解題的思路和方法。在這一點上應該是必須的。特別是習題課,教師可以完全不講題,但是在解題方法、思路、入手點這些方面必修介入,以提高學生學習的效率和效果。
另外,學生講題過程中的語言的運用也需要不斷地加以指導,爭取能夠用較為簡練的語言講清楚一個問題的解決過程。
勾股定理反思12
時光稍縱即逝,轉眼間一個新的學期又要結束了,回顧已逝的教學時光,可謂百味俱全,其間有一節課我上得最投入、最值得回憶與反思。
記得那是期末的展示匯報課,(主任說可能會有校外的教師來聽課。)我當時很有壓力,晚上也難以入睡。我選的是《勾股定理》一課。為了上好這節課,我反復研究了去洋思學習的一些記錄,努力用新理念新手段來打造我的這節課。當我滿懷信心地上完這節課時,我心情愉悅,因為我教態自然得體,與學生合作默契,基本上獲得了教學的成功。
1、從生活出發的教學讓學生感受到學習的快樂
在“勾股定理”這節課中,一開始引入情景:
平平湖水清可鑒,荷花半尺出水面。
忽來一陣狂風急,吹倒荷花水中偃。
湖面之上不復見,入秋漁翁始發現。
花離根二尺遠,試問水深尺若干。
知識回味:復習勾股定理及它的公式變形,然后是幾組簡單的計算。
2、走進生活:以裝修房子為主線,設計木板能否通過門框,梯子底端滑出多少,求螞蟻爬的最短距離,這些都是勾股定理應用的典型例題。
3、名題欣賞:首尾呼應,用“代數方法”解決“幾何問題”。印度數學家婆什迦羅(1141—1225年)提出的“荷花問題”比我國的“引葭赴岸”問題晚了一千多年。“引葭赴岸”問題,是我國數學經典著作《九章算術》中的一道名題。《九章算術》約成書于公元一世紀。該書的第九章,即勾股章,詳細討論了用勾股定理解決應用問題的`方法。這一章的第6題,就是“引葭赴岸”問題,題目是:“今有池一丈,葭生其中央,出水一尺。引葭赴岸,適與岸齊。問水深、葭長各幾何?” “荷花問題”的解法與“引葭赴岸”問題一樣。它的出現卻足以證明,舉世公認的古典數學名著《九章算術》傳入了印度。《九章算術》中的勾股定理應用方面的內容,涉及范圍之廣,解法之精巧,都是在世界上遙遙領先的,為推動世界數學的發展作出了貢獻。鼓勵學生可以自己利用課余時間查閱相關資料,豐富知識。
4、在教學應用勾股定理時,老是運用公式計算,學生感覺比較厭倦,為了吸引學生注意力,活躍課堂氣氛,拓寬學生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。并且將問題用動畫的形式展現出來,不僅將問題形象化,又提高了學生的學習興趣。同時將實際的問題轉化為數學問題的過程用直觀的圖形表示,在降低難度的同時又鼓勵了學生能夠看到身邊的數學,從而做到學以致用。最后讓學生互相討論,就這樣讓學生在開放自由的情況下解決了該題,同時培養了學生之間的合作。
5、最后介紹了勾股定理的歷史,并且推薦了一些網站,讓學生下課之后進行查閱、了解。這是為了方便學生到更廣闊的知識海洋中去尋找知識寶藏,利用網絡檢索相關信息,充實、豐富、拓展課堂學習資源,提供各種學習方式,讓學生學會選擇、整理、重組、再用這些更廣泛的資源。這種對網絡資源的重新組織,使學生對知識的需求由窄到寬,有力的促進了自主學習。這樣學生不僅能在課堂上學習到知識,還讓他們有了怎樣學習知識的方法。這就達到了新課標新理念的預定目標。
通過本節課的教學,學生在勾股定理的學習中能感受“數形結合”和“轉化”的數學思想,體會數學的應用價值和滲透數學思想給解題帶來的便利;感受人類文明的力量,了解勾股定理的重要性。真正做到了先激發興趣,再合作交流,最后展示成果的自主學習。這堂課將信息技術融入課堂,有利于創設教學環境,教學模式將從以教師講授為主轉為以學生動腦動手自主研究、小組學習討論交流為主,把數學課堂轉為“數學實驗室”,學生通過自己的活動得出結論、使創新精神與實踐能力得到了發展。不足之處:學生合作意識不強,討論氣氛不夠活躍;計算不熟練,書寫不規范。
勾股定理反思13
對于“勾股定理的應用”的反思和小結有以下幾個方面:
1、課前準備不充分:
基礎題中是一些由正方形和直角三角形拼合而成的圖形(與希臘郵票設計原理相同),其中兩個正方形的面積分別是14和18,求最大的正方形的面積。
分析:由勾股定理結論:直角三角形中兩直角邊的平方和等于斜邊的平方。
其實質即以直角三角形兩直角邊為邊長的兩個正方形面積之和等于以斜邊為邊長的正方形的面積。但學生竟然不知道。其二是課件準備不充分,其中有一道例題的答案是跟著例題同時出現的,再去修改,又浪費了一點時間。其三,用面積法求直角三角形的高,我認為是一個非常簡單的數學問題,但在實際教學中,發現很多學生仍然很難理解,說明我在備課時備學生不充分,沒有站在學生的角度去考慮問題。
2、課堂上的語言應該簡練。這是我上課的最大弱點,我不敢放手讓學生去獨立思考問題,會去重復題目意思,實際上不需要的,可以留時間讓學生去獨立思考。教師是無法代替學生自己的.思考的,更不能代替幾十個有差異的學生的思維。課堂上老師放一放,學生得到的更多,老師放多少,學生就有多大的自主發展的空間。但這里的“放多少”是一門藝術,我要好好向老教師學習!
3、鼓勵學生的藝術。教師要鼓勵學生嘗試并尊重他們不完善的甚至錯誤的意見,經常鼓勵他們大膽說出自己的想法,大膽發表自己的見解,真正體現出學生是數學學習的主人。
4、啟發學生的技巧有待提高。啟發學生也是一門藝術,我的課堂上有點啟而不發。課堂上應該多了解學生。
勾股定理反思14
勾股定理是我們這學期教學中一個非常重要的定理,它揭示了直角三角形的三邊之間的數量關系,是典型的數形結合思想的運用,拿著我們初二數學備課組全體老師的精心設計的講學稿,上完課后,反思不少。本節課的設計主要是根據學生的認知結構,“以畫一畫、量一量、算一算、證一證、用一用”為主線軸展開教學的,著實體現了知識的發生、形成和發展的過程,真正地讓學生體會到觀察、歸納、驗證的思想和數形結合的思想,探究出勾股定理的內容,并能做到簡單地應用,主要成功的地方有:
一、導入新課,設疑巧激趣。
引入20xx年在北京召開的國際數學家大會會標,展示“弦圖”并設疑,迅速集中了學生的注意力,把學生的思緒帶進了特定的學習環境中,激發了全班同學的濃厚興趣和強烈的求知欲,為本節課的成功創造了有利條件。
二、引導量量、猜猜、證證,有條不紊,思路清晰。
讓學生動手畫直角三角形,觀察、分析,引導學生自己得出結論,再對結論進行科學的論證,用所得的結論解決數學問題。在課堂上,探索目標明確,體現了教學的重點和難點,充分發揮了學生的主體作用,調動了學生的積極性,培養了學生動手操作的能力,體現了以學生為主體的意識,各環節銜接緊密,學生課堂反應好。
三、注重學生的情感目標,實現加強愛國主義教育。
本節課在教學探討的過程中,還滲透著勾股定理的歷史方化背景,激發學生的民族自豪感,促使探索新知識的.熱情,整個課堂師生和諧,氣氛好;師生共同探討并驗證定理,鼓勵學生再用其他方法來驗證所得的勾股定理結論。
四、課堂上充分體現學生的主體地位,教師是組織者,引導者。
例:在引入拼圖驗證定理時,學生以前從未接觸過,故在教學中我就多給學生適當指導和鼓勵,盡量做學生的組織者、合作者。
通過這節課,備課、上課之后,感悟點點滴滴,確實還存在著一些遺憾。
①感覺今天這堂課沒有平時上課的氣氛那么濃,部分同學認為是錄像課,不敢拋頭露面,甚至連回答問題的聲音都小了很多,故主動提問的人較少。
②講學稿編設的內容較多,有點欲速則不達的感覺。
勾股定理反思15
我用了4課時講授了八年級下冊數學人教版的第十八章第一節勾股定理:
第一課時我主要講授的是勾股定理的探究和驗證,并舉例計算有關直角三角形已知兩邊長求第三邊的問題;
第二課時我主要講授了各種類型的有關直角三角形邊長或者面積相關問題;
第三課時講授了如何用勾股定理解決生活中的實際問題;
第四課時主要講授了怎樣在數軸上找出無理數對應的點。
這4個課時我采用的教學方法是:引導—探究—發現法;為學生設計的學習方法是:自主探究與合作交流相結合。
第一課時的課堂教學中,我始終注意了調動學生的積極性。
興趣是最好的老師,所以無論是引入、拼圖,還是歷史回顧,我都注意去調動學生,讓學生滿懷激情地投入到活動中。因此,課堂效率較高。勾股定理作為“千古第一定理”,其魅力在于其歷史價值和應用價值,因此我注意充分挖掘了其內涵。特別是讓學生事先進行調查,再在課堂上進行展示,這極大地調動了學生,既加深了對勾股定理文化的理解,又培養了他們收集、整理資料的`能力。勾股定理的驗證既是本節課的重點,也是本節課的難點,為了突破這一難點,我設計了拼圖活動,并自制精巧的課件讓學生從形上感知,再層層設問,從面積(數)入手,師生共同探究突破了本節課的難點。
第二課時我依據“學生是學習的主體”這一理念,
在探索勾股定理的整個過程中,本節課始終采用學生自主探索和與同伴合作交流相結合的方式進行主動學習。教師只在學生遇到困難時,進行引導或組織學生通過討論來突破難點。為了讓學生在學習過程中自我發現勾股定理,本節課首先情景創設激發興趣,再通過幾個探究活動引導學生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學生通過觀察圖形,計算面積,分析數據,發現直角三角形三邊的關系,進而得到勾股定理.
第三課時在課堂教學中,始終注重學生的自主探究。
由實例引入,激發了學生的學習興趣,然后通過動手操作、大膽猜想、勇于驗證等一系列自主探究、合作交流活動得出定理,并運用定理進一步鞏固提高,切實體現了學生是數學學習的主人的新課程理念。對于拼圖驗證,學生還沒有接觸過,所以,教學中,教師給予了學生適當的指導與鼓勵,教師較好地充當了學生數學學習的組織者、引導者、合作者。另外教會學生思維,培養學生多種能力。課前查資料,培養了學生的自學能力及歸類總結能力;課上的探究培養了學生的動手動腦的能力、觀察能力、猜想歸納總結的能力、合作交流的能力……但本節課拼圖驗證的方法以前學生沒接觸過,稍嫌吃力。因此,在今后的教學中還需要進一步關注學生的實驗操作活動,提高其實踐能力。
第四課時我另外向學生介紹了勾股定理的證明方法:
以趙爽的“弦圖”為代表,用幾何圖形的截、割、拼、補,來證明代數式之間的恒等關系;以歐幾里得的證明方法為代表,運用歐氏幾何的基本定理進行證明;以劉徽的“青朱出入圖”為代表,“無字證明”。
總的來看,學生掌握的情況比較好,都能夠達到預期要求,但介于有關勾股定理的類型題很多,不能一一為學生講解,但我還是建議將北師大版本中的《螞蟻怎樣走最近》的類型題加入本教材。
【勾股定理反思】相關文章:
勾股定理反思12-16
勾股定理評課稿12-11
反思與自我反思06-10
反思怎么寫?反思通用范文04-14
個人的反思03-02
初中的反思03-04
比的認識反思03-22
gkh反思02-29
比的化簡反思05-13